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Outline

Use numerical simulation of Rayleigh-BØnard convectionin realistic

geometries to learn about complex spatial patterns and dynamics in

spatially extended systems.

Examples:

� Pattern chaos: power spectrum

� Lyapunov exponents

� Coarsening and wavenumber selection
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Rayleigh-BØnard Convection

RBC allows a quantitative comparison to be made between theory and

experiment.
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Nondimensional Boussinesq Equations

� Momentum Conservation
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BC: no-slip, insulating or conducting, and constant 1T



Back Forward

Pattern Formation and Spatiotemporal Chaos - Chennai, 2004 5

Spectral Element Numerical Solution

� Accurate simulation of long-time dynamics

� Exponential convergence in space, third order in time

� Ef�cient parallel algorithm, unstructured mesh

� Arbitrary geometries, realistic boundary conditions
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Convection in an elliptical container

cf. Ercolani, Indik, and Newell, Physica D (2003)
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Pattern chaos: convection in small cylindrical geometries

� First experiments: 0 D 5:27 cell, cryogenic (normal) liquid He4 as

�uid. High precision heat �ow measurements (no �ow visualization).

� Onset of aperiodic time dependence in low Reynolds number �ow:

relevance of chaos to �real� (continuum) systems.

� Power law decrease of power spectrum P.f / � f�4

G. Ahlers, Phys. Rev. Lett. 30, 1185 (1974)

G. Ahlers and R.P. Behringer, Phys. Rev. Lett. 40, 712 (1978)

H. Gao and R.P. Behringer, Phys. Rev. A30, 2837 (1984)

V. Croquette, P. Le Gal, and A. Pocheau, Phys. Scr. T13, 135 (1986)
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(from Ahlers and Behringer 1978)
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Numerical Simulations

� 0 D 4:72, � D 0:78, 2600 . R . 7000

� Conducting sidewalls

� Random thermal perturbation initial conditions

� Simulation time � 100�h
� Simulation time � 12 hours on 32 processors

� Experiment time � 172 hours or � 1 week
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R D 3127 R D 6949
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Power Spectrum

� Simulations of low dimensional chaos (e.g. Lorenz model) show

exponential decaying power spectrum

� Power law power spectrum easily obtained from stochastic models

(white-noise driven oscillator, etc.)
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Power Spectrum

� Simulations of low dimensional chaos (e.g. Lorenz model) show

exponential decaying power spectrum

� Power law power spectrum easily obtained from stochastic models

(white-noise driven oscillator, etc.)

Simulation Results

Simulations reproduce experimental results....
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Simulation yields a power law over the range accessible to experiment
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When larger frequencies are included an exponential tail is found
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Where does the power law come from?

Power law arises from quasi-discontinuous changes in the slope of N.t/
on a t D 0:1� 1 time scale associated with roll pinch-off events.

This is clearest to see for the low Rayleigh number where the motion is

periodic, but again the power spectrum has a power law fall off.

Sharp events similar in chaotic and periodic signals
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Spectrogram




