
Physics 127c: Statistical Mechanics

Statistical Mechanics of Superfluidity

Excitation Picture

For the description in terms of a flowing ground state plus excitations seeLecture 15and problem 3 of
Homework 7for Ph127a.

This approach has some disadvantages. Conceptually, it has the problem that we calculate superflow
in terms of what it isn’t, i.e. the excitations which reduce the mass flow! The superflow is slipped in by
Galilean boost arguments. Practically, the approach is limited to translationally invariant situations, such
as a bulk fluid, where Galilean invariance applies. The most dramatic manifestations of superfluidity—the
flow through porous material with pores of a few Å in size such as vycor or aerogel, or in thin films of a few
atomic layers thick (or even subatomic layers) on substrates, cannot be addressed.

Broken Symmetry Approach

A more profound approach is to understand superfluidity within the general picture of broken symmetries.
The “Bose condensation” assumption〈b0〉 6= 0 (and is a macroscopic quantity) is a statement of the broken
symmetry. Rather than using the momentum representation, it is more convenient for further development
to rewrite this in terms of the boson field operator: in the lowest energy state (lowest free energy at nonzero
temperature)

〈ψ(x)〉 = ψ0 = |ψ0| eiφ. (1)

Here|ψ0| gives thestrengthof the ordering temperature, is given by the condensate density|ψ0| = √n0, so
it is fixed by the thermodynamic parametersP, T etc. On the other handφ can take on any value, and the
particular value in the superfluid reflects the broken symmetry, just as the direction of the magnetization in a
ferromagnet. The phaseφ is actually the phase of the state into which Bose condensation occurs in the weakly
interacting limit when this description makes sense. The broken symmetry is calledphase symmetry(the
invariance of the Hamiltonian to a change of phase of the quantum wavefunction) orgauge symmetry, since
for a charged system the wave function phase changes if the gauge of the electromagnetic vector potential is
changed.

Since an overall phase change does not change the energy, there are low energy states with a slow spatial
variation of the phaseφ(x), or with a phase difference1φ between two weakly coupled superfluids (the
coupling in the latter case is called aJosephson junction). These situations lead to a flow of particles. Since
these are equilibrium situations, the flow is dissipation free, i.e. superflows.

Superflow from phase differences/gradients

Josephson junctions Consider two weakly coupled lumps of superfluid (e.g. weakly interacting Bose
gases). We can imagine the weak coupling as resulting from a point contact: early Josephson junction in
superconductors were indeed made simply by bringing a superconducting spike into contact with a second
piece of superconductor. We can model this situation by the Hamiltonian

H = H1+H2− T [ψ+1 (0)ψ2(0)+ ψ+2 (0)ψ1(0)], (2)

whereH1,2 are the Hamiltonians of the separate systems, and the last term acts to transfer particles be-
tween 1 and 2 at the contact point0 (this term is known as the tunnelling Hamiltonian in the context of
superconductors).
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To calculate the energy to lowest order in the coupling strengthT we can simply replace the field operators
by their expectation values

√
n0e

iφ1,2 with φ1, φ2 the phases of the two superfluids, to give

E = E0− 2T n0 cos(φ1− φ2), (3)

with E0 the energy of the uncoupled systems. Note that the energy is minimized forφ1 = φ2 for the sign of
interaction term I chose—the usual case.

We can also calculate the particle transfer between the two systems. In the Heisenberg picture

dN1

dt
= i

h̄
[H,N1] , (4)

with N1 =
∫

1 d�ψ
+(x)ψ(x) the number of particles in 1.H1 andH2 commute withN1, so the only time

dependence comes from the tunnelling term. Using the commutation rules for the field operators gives

[ψ(0), N1] = ψ(0), (5)[
ψ+(0), N1

] = −ψ+(0), (6)

so that
dN1

dt
= i

h̄
T
(
ψ+1 (0)ψ2(0)− ψ+2 (0)ψ1(0)

)
. (7)

Taking the expectation value in the ground state, and using Eq. (1) gives the particle flow

J2→1 = dN1

dt
= 2T n0

h̄
sin(φ1− φ2). (8)

Equations (3) and (8) were derived by Josephson, and are named after him. The second equation shows that
a phase difference leads to a flow of particles. Since this is an equilibrium configuration, this flow occurs
without dissipation.

Josephson also derived a dynamical equation for how the phase evolves. For a single system we have,
taking the expectation value of the Heisenberg equation of motion in the ground state〈

0

∣∣∣∣dψdt
∣∣∣∣0〉 = i

h̄
〈0 |[H,ψ ]|0〉 = i

h̄
〈0 |Hψ − ψH |0〉 . (9)

Sinceψ adds a particle theH in the first term acts on the component of the ground state withN particles
and givesE0,N and the one in the second term acts on the component withN + 1 particles and givesE0,N+1.
The difference is just the chemical potential

E0,N+1− E0,N = µ, (10)

and so
dψ0

dt
= − i

h̄
µψ0. (11)

The solution isψ0 ∝ e−ιµt/h̄, or an equation for the dynamics of the phase

h̄
dφ

dt
= −µ. (12)

For the two superfluids in contact

h̄
d(φ1− φ2)

dt
= −(µ1− µ2). (13)
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Equations (3), (8) and (12) were derived by Josephson, and are named after him. The second equation shows
that a phase difference leads to a flow of particles. Since this is an equilibrium configuration, this flow occurs
without dissipation.

Schematically, the equations can be summarized by

h̄
dN

dt
= dE

dφ
, (14a)

h̄
dφ

dt
= −dE

dN
. (14b)

These equations can be interpreted in terms ofφ andNh̄ being conjugate variables analogous tox and
p, so that the quantum mechanical behavior can be calculated using the commutation rule [φ,N ] = −i
or N → −id/dφ. We are not very familiar in standard quantum mechanics dealing with number and
phase operators. A simple “lattice-gas model” of a superfluid you will look at inHomework 3shows the
analogy with a magnetic system with the correspondenceN ↔ Sz (the z-component of the total spin) andφ
corresponding to rotations about thez axis, so that the conjugate-variable description is apparent.

Slow phase gradients Within a superfluid system slow spatial variations of the phase are low energy states.
Writing

vs = (h̄/m)∇φ (15)

there will be an energy cost per unit volume

ε = 1

2
ρsv

2
s . (16)

By similar arguments to the previous section, or more macroscopic ones, the phase gradient leads to a mass
flow or momentum density

g = ρsvs . (17)

I have chosen to write things in terms ofvs which has the dimensions of a velocity. For a translationally
invariant system where we can use Galilean boost arguments,vs is indeed a velocity, andm is the mass of
the particles. In other situations the idea of a velocity is not useful, the definition is just a convention, and
the mass used could be anything (of course, with the corresponding change of the value ofρs).

Note that the superfluid densityρs is introduced in terms of the energy cost of spatial variations. It
is fundamentally thestiffness constantof the broken symmetry variable, entirely analogous to the elastic
constants of a solid, of the gradient coefficient in a Ginzburg-Landau free energy. It is then a result of the
fundamental connection between the number and phase operators discussed below Eq. (14) that leads to its
role as the coefficient relating the phase gradient to a mass flow Eq. (17).

Equation (15) tells us many important things about superflow. Clearly it is “potential flow”

∇ × vs = 0. (18)

Also, since the potentialφ corresponds to a quantum phase, so thateιφ must be single valued, the circulation
(the integral around a closed loop) is quantized∮

vs · dl = n× 2π h̄/m, n and integer. (19)

The quantityκ = h/m is the quantum of circulation: in a closed torus geometry only flows corresponding
to circulations equal to integer multiples of this basic unit are possible. In a “bucket” rotating with angular
velocity� the fluid velocity cannot simply be the obvious�×x, since this violates the quantized circulation.
This leads us to the topic ofquantized vortex lineswhich are the topological defects of the broken symmetry
state, and play an important role in superflow properties in general, and the nature of the phase transition in
two dimensions.
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Further Reading

Feynmanhas a typically elegant discussion of the role of the phase in superfluidity, superconductivity, and
the Josephson effect in chapter 21 of volume III of hisLectures on Physics. A classic review article from the
early days of the understanding of broken symmetry is Rev. Mod. Phys.38, 298 (1966) byP. W. Anderson,
availableonline. The visualization of the vortex lines in rotating He4 was done byE. J. Yarmchuk, M. J. V.
Gordon, and R. E. Packard, Phys. Rev. Lett.43, 214 (1979), availableonline. Brian Josephson’s original
paper is Phys. Lett.1,251 (1962), and he wrote a review at Rev. Mod. Phys. 36, 216 (1964), availableonline.
David Goodsteinhas a good discussion inStates of Matter.
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http://prola.aps.org/abstract/RMP/v38/i2/p298_1?qid=d8685159ed4b7a8c&qseq=2&show=10
http://prola.aps.org/abstract/PRL/v43/i3/p214_1?qid=caf3c2bd8ab353a5&qseq=6&show=10
http://prola.aps.org/abstract/RMP/v36/i1/p216_1

	Physics 127c: Statistical Mechanics
	Statistical Mechanics of Superfluidity
	Excitation Picture
	Broken Symmetry Approach
	Superflow from phase differences/gradients

	Further Reading


