ANNALS OF pHYSICS: B, 183-223 (1958)

On Mayer's Theory of Cluster Expansions*
Epwixn E. SALPETER

Newman Laboratory of Nuclear Studies, Cornell University, Ithaca, New York

New derivations are presented for Mayer’s well-known irreducible cluster
expansions (in powers of the density) for the fugaecity, for the two-body cor-
relation function and for the n-body correlation function, These derivations
are based on the assumption that all the cluster expansions converge (and are
thus not suitable for investigating condensation phenomena) but shorteir-
cuit much of the combinatorial algebra encountered in previous derivations,
by means of relatively simple topological arguments.

An expansion is derived for the two-body correlation function for a system
involving long-range but weak two-body forces. The first term of this expan-
sion reduces to the Debye-Hiickel theory for the special case of Coulomb forces.
This expansion differs slightly from one derived previously by Mayer and the
problem of analytie continuation, encountered when proceeding to the Cou-
lomb force, is treated differently. Topological methods are outlined for re-
deriving some integral equations of Kirkwood and Salsburg and of Mayer and
Sarolea.

1. INTRODUCTION

A large class of problems in classical statistical mechanics deals with the equa-
tion of state and with the two-body (or n-body) correlation function for a
system containing a very large number of atoms, molecules or ions. For a gas con-
sisting of neutral molecules, Mayer’s method of cluster expansions (/-3) is emi-
nently successtul. In this method one first derives infinite (reducible-cluster)
expansions involving powers of the fugacity Z. Finally one derives infinite (ir-
reducible-cluster) expansions in powers of the density p (not involving powers of
Z) both for the fugacity (/) and for the n-body correlation function (2). For low
enough densities these expansions converge rapidly, even if the repulsive poten-
tial between two molecules at short distances is very strong, as long as the inter-
action potential falls off rapidly enough at large distances, which is the case for
neutral molecules. '

However, if the long-range Coulomb potential is acting between the constit-
uent ions and electrons in a solution of electrolytes or in a plasma, this cluster
expansion breaks down however low the density is. An approximate method for
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treating systems involving Coulomb interactions, valid only in the limit of low
density, was proposed a long time ago in the classic paper by Debye and Hiickel
(4). More recently a number of authors (5—9) have developed methods which
contain the Debye-Hiickel results as a first approximation but are capable (at
least in principle) of yielding corrections for the density being finite. These vari-
ous methods have some features in common; in particular, integral equations
involving the two-body correlation function and more complicated functions than
simple powers of the density occur.

In a system containing neutral molecules without long-range forees, condensa-
tion phenomena take place if the density is high enough. For such densities the
cluster expansions, at least in their simplest form, again break down. Although
no entirely satisfactory statistical mechanical treatment of liquids or of con-
densation phenomena exists at the moment, a large number of attempts have
been made. Of these diverse methods, many make use of various integral equa-
tions involving again the two-body (and n-body) correlation function. References
to the voluminous literature will be found in the reviews by De Boer (10), Green
(11), and Hill (12).

The purpose of the present paper is largely methodological: First of all we shall
rederive Mayer’s well-known expansion in terms of irreducible clusters, both for
the fugacity and for the n-body correlation function, by means of a new method
(Sections 2, 3, and 4). In this method much of the combinatorial algebra involved
in the more standard derivations is replaced by simple topological considerations
relating to Mayer’s cluster diagrams. After that we shall derive various other
expressions which involve integral equations as well as expansions (Sections 3,
6, and 7). Most of these expressions are not new, but are derived by a method
which again circumvents much of the combinatorial work. This is achieved by
topological considerations on possible regroupings of the various cluster dia-
grams.

The author should perhaps apologize in advance for writing a paper which, in
some ways, represents several steps backwards: Many of the results are not new,
some more powerful techniques and more general results have been developed
previously and some of the methods of derivation used in the present paper are
less rigorous than previous derivations. Nevertheless it is hoped that, in a sub-
ject beset by complicated notation and difficult mathematical proofs, the simple-
minded and unrigorous derivations of previously known expressions might be of
some help in the future search for new expressions and relations.

In the remainder of this section we explain the notation and the restrictions
used. We consider a system of volume V' and temperature 7 consisting of N par-
ticles, all of the same mass m and similar properties and with a central inter-
action potential U(r;;) acting between any pair 7,7 of the particles. We assume
classical mechanics holds and that no many-body forces act. We make no restric-
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tions against two-body potentials U(r) which become positively (repulsive) in-
finite at small distances r, but assume U(r) does not equal minus infinity any-
where. We assume at the moment that U(r) falls off more rapidly than r° at
large distances. We shall consider the special case of the long-range Coulomb po-
tential only in Section 5.

Since we are dealing with classical mechanics the momentum space integrals
in the macrocanonical partition function for the N particles can be integrated
immediately and the Helmholtz free energy, A, can be written (7, 72) in the form

ANV, T) = —kT In [(2emkT /B (VY /NOYQ(N,V,T)). (1.1)

The symbol Q(N,V,T), which we shall often abbreviate to Qx , stands for the
configuration integral

QN.V.T) = V‘Nf fdl 42 - dN expl—= 3 wi  (12)

1Zi<jSN
We have used the abbreviation

Uij = U(T“)/kT

and | dj denotes integration of the position coordinate of particle j over the vol-
ume V. The only term to be evaluated in expression (1.1) for the free energy A
is the function Q(N,V,T). This function @ is normalized so that it equals unity
if u.; is zero, i.e., for the trivial case of no interaction. We are considering poten-
tials U(r) of finite range and will be interested in the variation of the function Q
with particle density p = N/V for extremely large values of the volume V. For
such finite range potentials the integral Q(N,V,T) approaches unity as p ap-
proaches zero for any finite and fixed value of N (V approaching infinity).

Instead of evaluating Q(N,V,T'), and hence the free energy A, directly we shall
only consider the variation of @» with the particle number N, keeping V and T
fixed. This variation can be expressed in terms of the chemical potential x or the
fugacity Z or the concentration activity coeflicient v. These quantities are re-
lated to each other in a simple manner and are defined by

b= (?—é) = kTlln Zy — In (2emkT/0*)¥*;
N /Jv.r

where p = N/V is again the particle density. We are only considering systems
with no long-range order in the limit of N and V very large, but with the density
p = N/V finite. In such cases ¥ (or Z or u) as a function of N,V,T depends only
on the two variables p and T. Even though we do not yet have explicit expres-
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sions involving the pressure, a knowledge of v or Z or u) as a function of p and
T is sufficient for determining all other thermadvynamic functions: Using the fact
that Qy (and also y) approaches unity as the density p approaches zero, we have
for any finite p ‘

N P
In QN,V,T) = — f o (VT AN = — 7 f In v(o,T) dp’.  (1.4)
0 0

The integral (1.4) thus determines the Helmholtz free energy A as a function of
N, T and of V (or p). From this free energy function A all other thermodynamic
functions can be calculated, such as energy, entropy and the pressure P as a func-
tion of p and T (equation of state). We give just a few examples of explicit ex-
pressions for thermodynamic functions in terms of the concentration activity
coefficient v: From the general relation

3Pp.T) _  dulpT)
dp i dp

and the fact that the pressure approaches zero when the density does, we find
for the equation of state

P@f)=kr@43£@w9h%§!9] (15)

We also know that the Gibbs free energy function F(N,T,P) is simply equal to
N, where p is given in (1.3). In this expression for F the density p can be elim-
inated in favor of the pressure P by means of the equation of state (1.5). For
those special cases for which the Taylor expansion in powers of p for the logarithm
of the function v(p,T) converges. i.e.,

mﬂmv=—§mww,

the equation of state (1.5) reduces to

- k
P(p,T) = kTp [1 -2 'Bk(T)Pk] , (1.5a)
= k+1
the well-known virial expansion.
We define next the n-body correlation function F, and the potential of mean
force w, by

F.(1,2, -+ n) =exp[—w,(1,2, - - n)]
(1.6)

Z' Uil
1 <7

=z=N

= O V"™ ¥ | ... | d —_
NV f f(n—i-l) dN exp | 1

ES



MAYER'S CLUSTER EXPANSIONS 187

In this expression 2 u,; includes the particles 1 to n but their positions are to be
considered fixed at 1, 2, - - - 7, . We are considering only a system without long-
range order of volume infinitely large compared with the potential range. The
function F, is thus invariant to a displacement of the group of n particles as a
whole and depends only on the n — 1 vector distances rj2, 7o5, + -+ 7,1, between
the particles. For a single particle, in particular, we have Fi(1) = 1, w(1) = 0.
If the interaction potential U(r) is spherically symmetrical the two-body correla-
tion function F»(1,2) = F(ri2) depends only on the radial separation ry; between
the two particles. A number of alternative definitions of a n-body correlation
function will be found in the literature, which differ from each other by terms of
relative order n/N. With the definition (1.5) we adopt here we have exactly

Foy(12, -om — 1) = V*lfdn Fo(l2, - n— 1, m). (1.7)

We shall see that F, approaches a constant value if particles 1 to n — 1 are
fixed and the particle n moves far away from the other n — 1 particles. This
ticular, if all the n particles are very far from each other, F, differs from unity
only by terms of order n°/N. For most purposes of this paper we shall be in-
terested in moderate values of n and shall be able to neglect these small differ-
ences.

The two-body correlation function F2(1,2) = Fi(ry) is of course of interest in
its own right. In addition a knowledge of it, or rather a slight generalization of it,
is also sufficient for determining the concentration activity coefficient v and hence
the fugacity (see Ref. 12, p. 193): We define a generalization of the configuration
integral Q» , the coefficient v and the correlation function Fy(1,5) as follows. We
consider particle 1 endowed with a “charging parameter” & but leave the other
N — 1 particles unaltered. More specifically, we define Qy(%,) by the expression
© (1.2) but with u;; replaced by &u;; and all the other u,; unaltered. We shall de-
note Qn-1/@n(&) by v(&). We define a function Fu(l,j; &) = Fo(ry; ; &) in an
analogous manner, namely

P28 = @@V [ [ aV e - eug (18)

with £ = 1 for ¢ ¢ 1. For the special case £ = 1 we have of course Qu(&,) =
Qx,v(&) = v and Fo(1,2; &) = F»(1,2). For the special case & = 0 the particle
1 does not interact with any other particle and we have Qn(&) = Qv_y,v(&) = 1
and Fy(1,2; &) = Fi(2) = 1. From these definitions one easily obtains

dlnv(&) < . 3
e 1% ;fdjul,ﬁ’z(l,g, &)
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and, approximating N — 1 by VN,
1
Iny = pf défd’ﬁ‘ru(r)F-z(r; £), (1.9)
0

where u(r) = U(r)/kT as before.
2. MAYER'S CLUSTER EXPAXNSION FOR THE FUGACITY

The main aim of this section is to derive the well-known virial expansion for
the fugacity Z (or, rather, for its logarithm) by a somewhat unorthodox method.
This expression for In Z is an expansion in powers of the density p with Mayer’s
irreducible cluster integrals 8:(T) as coeflicients. Before deriving this expression,
we first rederive another well-known expression, the expansion for the density
in powers of the fugacity with reducible cluster integrals as coefficients. We shall
make formal use of this expression in our derivations of subsequent expressions.

We consider the volume V' and the temperature as fixed and shall investigate
expressions for vy ', the inverse of the activity concentration coefficient, defined
by Qx~/Qx_1 where Qy is given by the integral in (1.2). Let us label the extra
particle occurring in @ as particle 1, those present both in @y and Q~—; as 2 to
N. Following Mayer we split the integrand in the integral occurring in (1.2) into
the following sum

1
exp[— 2 ui,] =1+ 2 f +§}:fafﬁ 4o
1Zi<iEN « oy
fa = f” == e—wu"f - 1

In (2.1) the symbol « (or 8) stands for any one of the N(N — 1)/2 pairs of par-
ticles (¢j) and the sum consists of 2¥¥ 7" terms corresponding to the possible
presence or absence of any of these pairs. Each of these terms can be represented
graphically by a diagram which contains one line connecting a pair of points
labelled ¢ and j for each factor f;; present in this particular term in the sum
(2.1). For a potential of finite range the factor f;; approaches zero rapidly as the
separation r,; becomes very large compared with the range.

The various diagrams and the corresponding terms in (2.1) can be classified
and simplified as follows. For any diagram there is a unique number, say I, of
points which are at least singly connected to point 1 (i.e., connected either di-
rectly by a line representing a factor in (2.1) or indirectly by an unbroken suc-
cession of lines passing through some of the other I — 1 points). The part of this-
diagram which involves the I 4+ 1 singly connected points (including the point 1)
is called a single “cluster”. The remaining N — [ — 1 points in our complete
diagram may be connected to each other in any manner (or not at all), but none
of these N — [ — 1 points can be connected (directly or indirectly) to any of the
! + 1 points of the cluster which contains point 1 (if any did, they would be at

(2.1)
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Fig. 1. Ap example of a general diagram—reducible cluster plus disconnected parts.

least singly connected to point 1 and would thus be part of the cluster). Figure 1
is an example of a diagram with 23 points which includes a cluster with I = 14.
We consider now the contribution to the integral for Qx in (1.2) of the term which
corresponds to a particular diagram consisting of a given cluster (connecting
particle 1 with [ given particles 2 to I + 1) plus some configuration of the re-
maining N — [ — 1 particles which are disconnected from the cluster. This in-
tegral reduces to the product of two simpler integrals: One is the integral

Iy = V70 fdl edl+ 0 I

with those f;; included which correspond to lines in the cluster diagram; the other
is an integral over the remaining N — ! — 1 particles. We can now consider to-
gether all the diagrams in which the first integral /;,, (with given particles 1, 2,
+++ 0l + 1) is exactly the same, but with all possible configurations for the
(N — I — 1)-dimensional integral which multiplies 7,,;. From the identity (2.1)
it follows that the sum of all the possible (¥ — I — 1)-dimensional integrals is
simply

V—.\'+l+1fd(l + 2) ... dN exp [— uz-,-:’ = QN-—Z—I;
N

42=i< g

All

a configuration integral of form (1.2) with the same values of ¥V and 7 but
N — [ — 1 particles instead of N.

These diagrams together then contribute an amount of 7, ,Q~x_;_; to the ex-
pression for Qy . Next we multiply 7,,; by the factor (N — I)I/{(N — [ — I)!
to take care of the fact that any [ particles of the N — 1 particles (besides the
singled out particles 1) can be the companions of particle 1 in the cluster. We
define the Mayer cluster integral b; by

1 (1+1) Vl (1+1)
bH—l :W E fdl d(l,+ I)Hfij = m Z It+1, (2-2)

1+1 . . .
where the symbol >, denotes summation over all the possible single cluster
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diagrams which can be formed from ! 4 1 given particles. Then
VN = DYV = L= DI+ Db Quoi

is the total contribution to @y from all diagrams in which the particle 1 occurs in
a cluster involving { other particles. In order to include all the 2""™""* diagrams
we now merely have to sum this expression over all values of ! from zero to
N — 1. Noting that

N —v» QN_v—l
. = Ty,
V Qv v
the fugacity for density [(V — »)/Nlp, we finally obtain
1 N QN N—1 [4
S = = = I+ 1)b Zny. 2.3
YN VZN QN—I lz=0 ( + ) H vI=Il N ( )

The expression (2.3) is exact and holds for all values of N. The right-hand side
of (2.3) for Zy depends only on the fugacity Z for particle numbers (N — »)
smaller than N (besides depending on the cluster integrals b;). By the repeated
use of this recursion relation (2.3) for Zy_, , ete., one could derive an explicit ex-
pression for Zy in the form of a multiple sum involving only the b; and known
functions of N and V. This expression would be exact and applicable whether we
are dealing with condensed systems or not and might therefore be useful for in-
vestigating condensation phenomena. This expression, however, is probably too
complicated for practical applications. If we restrict ourselves to low enough den-
sities where no condensation is possible, i.e., we assume that the sum in (2.3)
converges rapidly, this expression simplifies considerably. For such systems we
let N and V tend to infinity, keeping the density p = N/V finite, and assume
that even in this limit only terms with finite values of [ are of any importance in
the sum (2.3). Since Zy_, is a smoothly varying function of (N — »)/V, we can
in this limit replace Zx_, , Zy_:, ete., by Zx . Dropping the subscript N, we then
have

p = 2 IZ,
=1
' (2.4)

]

v = 2 (U Dbiap'y'
In the limit of V, N — « but with finite [, the cluster integrals b, depend only
on temperature but not on V or density p and (2.4) can be thought of as an ex-
pansion for p in powers of Z.
We come now to the expansion for 1/Z (or its logarithm) in powers of the den-
sity with Mayer’s irreducible cluster-integrals 8 as coefficients. In the orthodox
derivation of this expression, the b; are first expressed in terms of the 8 and the
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expansion in (2.4) is then inverted. Instead we shall derive an expression for
1/y by a method somewhat similar to that which leads to (2.3), but with terms
regrouped in a somewhat different manner. This method will give the desired
result without much labor, but we shall have to restrict ourselves at the start to
cases where the cluster-expansion converges rapidly; our derivation will thus be
unsuitable for considering condensation phenomena.

We have already seen that many of the terms in the expansion (2.1) when
substituted into the integral (1.2) can be written as the product of several inde-
pendent integrals, each one corresponding to one cluster integral. Many of these
cluster integrals further reduce to the product of even simpler independent in-
tegrals. Consider a cluster diagram with [ 4+ 1 points which can be split into two
or more disconnected diagrams by ‘“‘snipping” the diagram at a single point. In
the corresponding integral in (1.2) carry out the integration over the position
r, of the “snipped” particle last and in the other [ integrations use the coordinates
of the other points relative to this one, (r; — r,), as the variables of integration.
With r, fixed, the 3l-dimensional integral for such a ‘reducible cluster’’ is then
the product of two or more independent integrals. In principle, these independent
integrals depend on the position r, relative to the boundaries of the volume V.
However, if we restrict ourselves to finite values of the number [ of particles, to
potentials of finite range and proceed to the limit V' — =, then this dependence
on r, is eliminated, the last integration over r, simply gives a multiplicative
factor of V and the 3(! 4+ 1)-dimensional integral in (1.2) is strictly the product
of two or more independent integrals.

We call a cluster diagram containing & points bemdes our singled out point 1,
which cannot be reduced further by ‘“‘snipping” at any single one of the (k¢ + 1)
points, a ‘‘simple irreducible cluster”. Mayer’s ‘“‘irreducible cluster integrals”
B; are defined by

=y [ [azeag+ 0 TSy, (2.5

where the symbol Y.* denotes summation over all possible irreducible cluster
diagrams which can be formed with k¥ + 1 given particles. For £ = 0, the par-
ticle 1 is not connected to any other point and 8y = 1. For k = 1, 2, 3 the corre-
sponding diagrams are given in Fig. 2 (to the left of the first dotted line) and we
have

B = f d2fis,
- % f f d2 d3fuofufu » (2.6)

g = ¢ [[] 42 a3 atfusututu( + St fota)
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Fia. 2. From left to right: Simple 1-irreduciblé clusters; general 1-irreducible clusters
1-reducible clusters. The diagrams with & = 1, 2, 3 are shown.

The factors 3 and 6 which occur in 8;, for instance, are the number of possible
permutations of the four numbered points which lead to distinguishable diagrams
but of the same kind of integral (for more detail, see Ref. 1, p. 286). Since we are
restricting ourselves to finite values of £ with V' — « for potentials of finite range,
each cluster integral 8;(7") is independent of volume V (or density p). We shall
also find it useful to define a class of diagrams intermediate in complexity be-
tween the ‘“simple irreducible’ and reducible clusters: We shall call a cluster
diagram with & points plus the singled out point 1 a “general 1-irreducible clus-
ter” if it cannot be reduced to two or more separate clusters by “‘snipping” at
any of the & points (other than point 1), whether it can be reduced by snipping
at point 1 or not. These diagrams thus include all the “simple irreducible’” ones
plus some additional ones. In Fig. 2 all the diagrams to the left of the second
dotted line belong to the class of “general l-irreducible clusters’”. We define
“general 1-irreducible cluster integrals” 8, in complete analogy with (2.5). For
E=1,2,3 we have

?

By = [31,

. 1,
B2 _ ﬁ2+2"—!61; (2'7)
3

»83, = 53 + oY

8.8, + 31—!313.

The definitions of the various types of clusters can also be phrased in more
topological language: A general (reducible) cluster is a diagram in which all pairs
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of points are at least singly connected. A “general 1-irreducible cluster”, with %
points (which we shall call field-points) besides point 1, is defined by the condi-
tion that each of the £ field-points is either “multiply connected” to point 1 or
else it is directly connected only to point 1 and to no other point. By a “multiple
connection” between two points we mean that there are at least two different
continuous paths between them with 7o intermediate points common to the two
paths. Finally, a “simple 1-irreducible cluster’” with £ > 2 can be defined by the
two conditions that (i) each field-point is multiply connected to point 1, and (ii)
for each pair of field-points there is at least one path not passing through point
1 which connects them. One can show' that conditions (i) plus (ii) are equivalent
to the single condition (ii1): Each of the & + 1 points is multiply connected to
every other point. The term 8; for & = 1 is, however, also included among the
irreducible clusters (being a one-dimensional integral, it cannot be reduced fur-
ther), even though there is only a single line in this “cluster”.

An example of the various stages of reduction possible for a complex diagram
is given in Fig. 1. This diagram with 23 points can first be reduced to a reducible
cluster diagram with 14 points (including the point 1). This cluster can further
be reduced to a “general 1l-irreducible cluster’ containing the points 1 to 5, by
simply “snipping” at points 2, 3, and 4. Finally this five-point cluster can be
reduced to three separate “simple irreducible clusters” (1,2,3), (1,4) and (1,5) by
snipping at the singled-out point 1. The total number of simple irreducible clus-
ters with a given number k£ + 1 of points is much smaller than the number of
general (reducible) clusters with the same number of points, I = k + 1, for large
k. Nevertheless even the number of simple irreducible clusters increases very
rapidly with k for large k. We shall not discuss in this paper the question of con-
vergence of the sequence of numbers 8, or their explicit evaluation.

Having defined the cluster integrals 8, and 8" we can now start on the deriva-
tion of the expansion for 1/y in powers of the density. We again write 1/yy =
Q~/Qxr-1 and expand the expression (1.2) for Qn by means of the identity (2.1)
and single out particle 1 as the extra particle present in Q» but not in Qy_, .
We reclassify the totality of general (reducible) cluster diagrams which contain
the point 1 in the following manner: I'or each such diagram there is a unique
“general l-irreducible cluster” with k£ points, say, in addition to point 1, to
which this diagram could be reduced (we shall call these & additional points
“field-points”. We consider now all the diagrams which contain a particular

! To outline the derivation: It follows from (i) that there are at least twp paths, a and
b, connecting a pair of field-points 77 with at most point 1 common to the two paths, If
both paths a and b pass through point 1, then (ii) ensures that some point (possibly 7) on
“one side” of point 1 is connected to some point (possibly j) on ‘“‘the other side’” by some
link not passing through any of the points of paths a and . From this it follows that ¢ and
# are multiply connected, i.e., that (iii) holds. Theinverse, i.e., that (i) and (ii) follow from
(1i1), is obvious,
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“general l-irreducible cluster’” with point 1 plus the given field-points 2, 3,
-+, k. A typical term in this collection of diagrams can be built up as follows:
We add to the fixed ‘““1-irreducible cluster’ any kind of cluster diagram (reducible
or not but at least singly connected) containing I, points besides the point 2,
attached at the point 2 only. We next attach at the single point 3 any kind of
cluster diagram with [; points (plus the point 3); and so on for all field-points 2
to k + 1. Note that we do not need to attach any diagram at point 1, since all
possible junctions at point 1 will be accounted for by considering ‘“general
1-irreducible clusters” rather than ‘‘simple irreducible” ones. The reducible
cluster diagram in Fig. 1, for instance, has k = 4 withl, = 3, = 2, l, = 4
and Is = 0 (i.e., no diagram attached at point 5 at all). In evaluating the con-
tribution to @x from one of these typical cluster diagrams with

k-+1
[Zg L+ 1)+ 1}
points we assume immediately that Y (I, + 1) < N and consequently replace
terms like (N — 1)!/LIN — L — 1)! by N*/L!, yx_1, by v» (which we simply
call v) and Zy_, by Zx (which we call Z), where L is any number of the order
of 2" (I, + 1) or less. Repeating the arguments which lead to (2.2), (2.3),
and (2.4) and, remembering the fact that reducible cluster integrals can be
written as the product of irreducible ones, we get for the contribution to Qx
from our typical cluster diagram® (after permutation over the possible number-
ings of all particles other than particle 1)

k41 E+1
NtV I_Izbl,“(z, +1); L= 22 i, + 1).

This contribution has to be multiplied by Qy_._;, to take account of all the dis-
connected graphs that can be formed from the remaining N — L — 1 points,
and to be divided by Q~—: to represent the contribution to 1/v (rather than to
Qv). Since we replace Qv—,/Qv by v in our approximation, our typical term
in the expansion for 1/ is then ‘ '

k+1

o8y 11 (4 + Dbiae™y", | (2.8)
where p = N/V and 8’ = b, = 1. It will be noted that each of the factors in
the product over » in (2.8) equals the contribution which the diagram attached
at the point » makes to the sum for v ' in (2.4). This fact greatly simplifies the
expression obtained when we sum (2.8) over all possible values of 1, : We also
explicitly make use of the fact that we are restricting ourselves to systems where

2 Note that no factor (k + 1) appears in this formula, because the definition (2.5) con-
tains k!, not (k + 1)L :
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the sum (2.4) converges after a finite number of terms even as N — . In this
case we can omit the restriction Z(l, + 1) € N and the summation over the
l,-values for the k particles 2, 3, ---, £ 4+ 1 are independent of each other. As
mentioned before, the summation over all /, for each of the % factors in (2.8)
separately simply gives one power of v ' for each of the k particles at which
cluster diagrams can be attached. These factors then cancel the term 4* which
appears explicitly in (2.8) and we get our required expansion for 1/y by sum-
ming over all values of £k,

v = ; Bi'o". (2.9)

For k finite and N, V — « the clusfer integrals 8,/ (T) in (2.9) are independent
of V and therefore of density p and (2.9), if it converges, is a pure Taylor expan-
sion for ¥ ' in powers of p. One can also obtain an expansion in powers of p for
1n v which involves as coefficients the “simple irreducible cluster integrals” By,
Eq. (2.5), which are somewhat simpler expressions than the 8;’: As indicated in
(2.7), the coefficients 8’ can be expressed as sums of products of various 8; . In-
stead of evaluating the general expression for 8" in terms of the 8, we shall de-
rive the desired expression for In 4 by first regrouping the terms in (2.9) (or,
rather, the corresponding cluster diagrams). Any ‘“general 1-irreducible cluster
diagram” with K points plus point 1 can be split into a unique number n of
“simple irreducible” clusters by “snipping” only at the point 1. If (k, + 1) is
the number of points in the »th of these n “simple irreducible” clusters, then
K = Y vk, . Apart from the single term 8’ = 1, we have k&, S landn S 1.
We now consider all the “general 1-irreducible’” clusters with a fixed value of n
but any value of K. If the ordering of the n clusters mattered then the expres-
sion H:Lq Bk,Pk’ would be a typical term in (2.9) and each k, could take on any
integral value from unity to infinity.If we sum this expression over all k, , inde-
pendently for each », we actually get n! times the corresponding contributions
to (2.9), since a diagram obtained merely by interchanging any of the n clusters
is in fact not counted as a separate diagram. This factor n! also appears in the
few examples given in (2.7). Finally, summing over all n 5 1 and adding the
term By’ = 1, we obtain the desired result

yi=1 + E 7%_'(; kak) = exp (kz_; kak), Iny= — l;l Bip".  (2.10)

3. CLUSTER EXPANSION FOR THE TWO-BODY CORRELATION FUNCTION

We wish to derive next the well-known (see Ref. 3, also 17) expansion in pow-
ers of the density for the two-body correlation function Fy(1,2). This quantity
is a function of relative distance ry; only in our approximation of N7/, V7! — 0
and is defined by Eq. (1.6),



