
Physics 127b: Statistical Mechanics

Kinetic Theory

Kinetic theory is the simplest approach that describes the dynamics of enormous numbers of particles. Often
it is the only one where we can make progress in actually calculating numbers such as viscosity or electrical
conductivity! It describes nearly ideal gases: usually the interactions are only taken into account in the
collisions(to be defined below) that lead to the approach to equilibrium, andnot in the properties of that
equilibrium (such as the equation of state, compressibility etc.). In some cases (e.g. Fermi liquid theory) it
is useful to take other effects of the interactions into account in a mean field sort of way.

An “ideal gas” is a good approximation for a system consisting of a low density of particlesor quasiparticles
(thermal excitations from a quantum ground state). In the latter case the density of quasiparticles is always low
at low enough temperatures, and so kinetic theory is useful. Since we are often interested in low temperature
properties of a quantum system, this application makes kinetic theory much more interesting. So kinetic
theory is useful in:

• classical gases;

• the interstellar medium (particles and phonons);

• plasmas;

• quantum systems at low temperatures (e.g. phonons and rotons in a Bose superfluid; phonons in solids;
particle-hole excitations from a Fermi sea…);

—a surprisingly large variety of interesting systems.

We will phrase the argument in terms of the classical gas.

The simplification

The full description of a many particle system involves the phase space distribution
ρ(Ex1, Ex2 . . . ExN ; Ep1, Ep2 . . . EpN ; t)d3Nqd3Np giving the probability (fraction of members of the ensem-
ble) of finding the system with particle 1 at a position betweenEx1 to Ex1 + d Ex1 with momentum betweenEp1

to Ep1+ d Ep1, particle 2 ….—a very complicated and complete description.

Kinetic theory works with theone-particle distributionf (Ex, Ep, t)d3xd3p giving the average number of
particles in volumed3x aboutEx and with momentum in a ranged3p about Ep. It is normalized to the total
number of particlesN ∫ ∫

d3x d3p f (Ex, Ep, t) = N. (1)

It is related to the full description by integrating overN − 1 particles:

f (Ex, Ep, t) ∼ N
∫
. . .

∫
ρ(Ex, Ex2 . . . ExN ; Ep, Ep2 . . . EpN ; t)d3x2 . . . d

3xNd
3p2 . . . d

3pN (2)

where the∼ derives from the complicated normalization choice forρ—if ρ were normalized so that the
integral over allExi and Epi were unity, the∼ would be replaced by an equality. Anysingle particlequantity
can be calculated fromf , but obviously a great deal of information is thrown away in getting tof , and
not everything can be calculated in terms of it. For example, the average interaction energy from pairwise
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particle interactions cannot be exactly calculated fromf , since this involves two particle correlations. But
we are dealing with nearly ideal gases, so this is OK!

In a classical context we often prefer to deal with the velocity rather than momentum. We can use a distribution
f (Ex, Ev, t) (a different function obviously—I should usefp andfv—but they only differ by a factor ofm3

and I’ll be sloppy in the notation, usingf for whichever one we are currently using.)

Elementary results

I presume you have seen the elementary kinetic theory results for the equilibrium gas. If the following are
not familiar, you can look inFundamentals of Statistical and Thermal Physics §7.9-13by Reif. Another
good reference on Kinetic Theory is the first chapter ofPhysical Kineticsby Landau and Lifshitz.

In a spatially uniform region and in equilibrium the distribution is theMaxwell distribution

f (Ex, Ev, t)→ f (Ev) = n
(

m

2πkBT

)3/2

e−mv
2/2kBT , (3)

with n = N/V the number of molecules per volume. (Check the normalization.) Other distributions easily
follow. For one component of the velocity the distribution is

g(vx) =
∫ ∫

dvydvzf (Ev) (4)

= n
(

m

2πkBT

)1/2

e−mv
2
x/2kBT , (5)

and for the speed the average number of particles with speed betweenv andv + dv is 4πv2f (v)dv. This
function has a maximum atv = √2

√
kBT /m, and averagesv = √8/π

√
kBT /m andv2 = 3kBT /m.

It is easy to calculate simple results for the ideal gas by appropriate integrals overf (Ev). For example the
number of molecules hitting unit area of surface per unit time (or the rate at which molecules exit through
a hole small compared to the mean free path so that bulk flow is not established known aseffusion) is 1

4nv̄,

and the pressure is13nmv
2.

Boltzmann Equation

For an ideal gas each particle evolves independently under its own Hamiltonian and so the evolution off is
given by a Liouville equation

df

dt
= 0 (6)

where the total derivative along a phase space trajectoryEx(t), Ep(t) is taken, i.e.

∂f

∂t
+ Ev · ∂f

∂ Ex + EF ·
∂f

∂ Ep = 0 (7)

writing Ev = Ep/m for d Ex/dt andd Ep/dt = EF with EF the force from any applied potential. (The result for
f (Ex, Ev, t) is readily derived.) This is known as theVlasov equationor thecollisionless Boltzmann equation.

We now take weak interactions into account by adding a “collision term” to the right hand side

df

dt
= df

dt

∣∣∣∣
coll

. (8)
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Of course, without specifyingdf/dt |coll this is an empty statement. The secret of the fullBoltzmann equation
is deriving this term, and then its consequences on the evolution off .

Sincef is a truncation of the full phase space distribution, and we know (in principle!) how this evolves
under the full Hamiltonian including interactions, we can derive an equation forf , and then the “collision
term” appears as everything that does not fit on the left hand side of Eq. (8)! The following is meant to be a
brief sketch of this, and certainly not a complete derivation. AgainPhysical Kineticsis a good reference for
a more complete treatment.

Let’s considernormalizedN particle distributions (i.e. the normalized version ofρ)f (N)(Ex1 . . . ExN ; Ep1 . . . EpN)
such that ∫

. . .

∫
f (N)d3Nxd3Np = 1 (9)

and reduced distributionsf (1)(Ex1, Ep1), f (2)(Ex1, Ex2; Ep1, Ep2) etc. are then

f (1) =
∫
. . .

∫
f (N)dτ2 . . . dτN (10)

f (2) =
∫
. . .

∫
f (N)dτ3 . . . dτN (11)

... (12)

(denotingEx1, Ep1 by τ1 and the phase space volume elementd3x1d
3p1 by dτ1 etc.). Ourf is justNf (1).

Then it is not too hard to show that

∂f (1)(τ1)

∂t
+ Ev1 · ∂f

(1)(τ1)

∂ Ex1
+ EF(Ex1) · ∂f

(1)(τ1)

∂ Ep1
= (13)

N

∫
∂u12(Ex1, Ex2)

∂x1
· ∂f

(2)(τ1, τ2)

∂ Ep1
(14)

whereu12 is the pair interaction potential. Note that the term on the right hand side is very similar to the
force term on the left hand side, but involves two particle correlations and so depends onf (2).

We could imagine deriving an equation for∂f (2)/∂t , and then the two equations would solve the problem.
Unfortunately, it is becomes apparent that the equation forf (2) will involve f (3) etc., and we develop an
infinite hierarchyof equations. (This is typically the case where we try to solve a many body problem by
looking at equations for low order correlation functions—there is no free lunch!)

We “derive” the Boltzmann equation byapproximatingthe right hand side with termsonly depending on
f (1). There are two essential pieces of physics in the approximation. Firstly, it is assumed that only two
particles are ever interacting together (i.e. three body interactions are neglected beyond the product of pairwise
interactions). Secondly the effect of the correlations on a short time scaleinducedby the collisions are ignored
in subsequent collisions—the approximation ofmolecular chaos. In a dense system we might worry that two
particles that have just collided may rapidly collide again due to the particles “rattling around” in a cage of
neighbors. In a dilute gas this does not seem likely, so the assumption seems very reasonable. However this
approximation has a profound effect: the original Liouville equation satisfies the time reversal invariance of
the original equations, whereas the Boltzmann equation does not. This of course is vital if we are going to
study the relaxation towards equilibrium and dissipative processes. It is usually the case that the transition
from reversible to irreversible dynamics appears through “sleight of hand” rather than careful, systematic
derivation.
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The Relaxation Time Approximation

We will first study the effect of collisions in a simple approximation: we suppose that collisions relax the
distribution back to the equilibrium distribution or alocal equilibriumdistribution exponentially with a single
time constantτ

df

dt

∣∣∣∣
coll

' −f − f0

τ
. (15)

Heref0 is often the global equilibrium distribution. However since the collisions conserve certain quantities—
maybe energy, momentum, particle number etc.—these are not changed andf0 may describe the local
equilibrium at fixed values of these conserved quantities. The quantities conserved depend on the application:
in scattering off fixed impurities energy and number are conserved, but not momentum; in binary collisions in a
gas energy, momentum and number are all conserved. The local equilibrium distribution will be characterized
by the appropriate conjugate fields (temperature for conserved energy etc.) that may not be the global
equilibrium value.

Consider the simple example of a charged gas in a constant, uniform electrical field scattering off fixed
impurities—the problem of electrical resistance.

The Boltzmann equation is
q EE
m
· ∂f
∂ Ev = −

f − f0

τ
(16)

since the other terms on the right hand side are zero in steady state and for a spatially uniform situation.
(Both these conditions can easily be relaxed, e.g. to consider the transient in a spatially varying field, or
the response to a time varying field.) The distributionf0 here is just the equilibrium one. For small electric
fields,f will be close tof0, and we can use this substitution on the right hand side, i.e. forf = f0+ f1 with
f1small

f1 ' −τq
m
EE · ∂f0

∂ Ev = −
τq

m
EE · v̂ ∂f0

∂v
(17)

wherev̂ is the unit vector alongEv,and the second expression results sincef0 is spherically symmetric. Now
the electric current is easily calculated

Ej =←→σ · EE =
∫
q Evf (Ev) =

∫
q Evf1(Ev) (18)

(sincef0 yields zero current). This gives the conductivity tensor

σij = τq2

m

∫
v

(
−∂f0

∂v

)
v̂i v̂j d

3v. (19)

This is readily calculated forf0 the Maxwell distribution or for af0 the Fermi-Dirac distribution for the gas
of electron quasiparticles in a low temperature (compared to the Fermi energy!) metal. In either case the
integral is justnδij with n the particle density, giving a diagonal conductivity

σ = nq2τ/m. (20)
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