Physics 127b: Statistical Mechanics

Kinetic Theory

Kinetic theory is the simplest approach that describes the dynamics of enormous numbers of particles. Often
it is the only one where we can make progress in actually calculating numbers such as viscosity or electrical
conductivity! It describes nearly ideal gases: usually the interactions are only taken into account in the
collisions(to be defined below) that lead to the approach to equilibrium,remdn the properties of that
equilibrium (such as the equation of state, compressibility etc.). In some cases (e.g. Fermi liquid theory) it
is useful to take other effects of the interactions into account in a mean field sort of way.

An “ideal gas” is a good approximation for a system consisting of a low density of panictpesiparticles
(thermal excitations from a quantum ground state). Inthe latter case the density of quasiparticles is always low
at low enough temperatures, and so kinetic theory is useful. Since we are often interested in low temperature
properties of a quantum system, this application makes kinetic theory much more interesting. So kinetic
theory is useful in:

classical gases;

the interstellar medium (particles and phonons);
» plasmas;

* quantum systems at low temperatures (e.g. phonons and rotons in a Bose superfluid; phonons in solids;
particle-hole excitations from a Fermi sea...);

—a surprisingly large variety of interesting systems.

We will phrase the argument in terms of the classical gas.

The simplification

The full description of a many particle system involves the phase space distribution
(X1, X2...Xn: P1, P2 .. py; AN qd®N p giving the probability (fraction of members of the ensem-
ble) of finding the system with particle 1 at a position betwéeto x; + dx; with momentum betweep;

to p1 + d p1, particle 2 ....—a very complicated and complete description.

Kinetic theory works with theone-particle distributionf (¥, p, 1)d®xd®p giving the average number of
particles in volume/3x aboutx and with momentum in a rang&p aboutp. It is normalized to the total
number of particlesv

//d3x &3p f(X, p,1) = N. (1)

It is related to the full description by integrating ovér— 1 particles:
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where the~ derives from the complicated normalization choice ferif p were normalized so that the
integral over allt; and p; were unity, the~ would be replaced by an equality. Asingle particlequantity

can be calculated fronf, but obviously a great deal of information is thrown away in getting'tand

not everything can be calculated in terms of it. For example, the average interaction energy from pairwise



particle interactions cannot be exactly calculated fropsince this involves two particle correlations. But
we are dealing with nearly ideal gases, so this is OK!

In a classical context we often prefer to deal with the velocity rather than momentum. We can use a distribution
f(&, v, 1) (a different function obviously—I should usg and f,—but they only differ by a factor of:*
and I'll be sloppy in the notation, using for whichever one we are currently using.)

Elementary results

| presume you have seen the elementary kinetic theory results for the equilibrium gas. If the following are
not familiar, you can look ifFundamentals of Statistical and Thermal Physics 87.®Reif Another
good reference on Kinetic Theory is the first chaptePbysical Kineticdy Landau and Lifshitz

In a spatially uniform region and in equilibrium the distribution is Maxwell distribution
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with n = N/V the number of molecules per volume. (Check the normalization.) Other distributions easily
follow. For one component of the velocity the distribution is
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and for the speed the average number of particles with speed betvee®hy + dv ii471v2f(v)dv. This
function has a maximum at= +/2,/kzT/m, and averages = /8/x /kzT/m andv = 3kzT/m.

It is easy to calculate simple results for the ideal gas by appropriate integralg @jerFor example the
number of molecules hitting unit area of surface per unit time (or the rate at which molecules exit through
a hole small compared to the mean free path so that bulk flow is not established kneffursis) is %m‘;,

and the pressure &imv2.

Boltzmann Equation

For an ideal gas each particle evolves independently under its own Hamiltonian and so the evolgtisn of
given by a Liouville equation
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where the total derivative along a phase space trajegtoy p(z) is taken, i.e.
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writing o = p/m for d%/dt anddp/dt = F with F the force from any applied potential. (The result for
f(x, v, 1) is readily derived.) This is known as thasov equatiomr thecollisionless Boltzmann equation
We now take weak interactions into account by adding a “collision term” to the right hand side

df _df
dr  dt '

coll

(8)

2



Of course, without specifyindf/dt|,,,; this is an empty statement. The secret of theBoltzmann equation
is deriving this term, and then its consequences on the evolutign of

Since f is a truncation of the full phase space distribution, and we know (in principle!) how this evolves
under the full Hamiltonian including interactions, we can derive an equatioyi,fand then the “collision
term” appears as everything that does not fit on the left hand side 08Ed.He following is meant to be a
brief sketch of this, and certainly not a complete derivation. A4dipsical Kineticss a good reference for

a more complete treatment.

Let’s considenormalizedV particle distributions (i.e. the normalized versiowdff M (X1 ... Xy; p1... Pn)

such that
f / F™BNxg?Np =1 (9)
and reduced distributiong™® (X1, p1), @ (¥1, Xo; p1, p2) etc. are then
fo :/...ff(N)drg...drN (10)
f@ =/.../f(N)dr3...dtN (11)
: (12)

(denotingx,, p1 by 71 and the phase space volume elem&ntd®p, by dr; etc.). Ourf is justNf @,
Then it is not too hard to show that
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whereu, is the pair interaction potential. Note that the term on the right hand side is very similar to the
force term on the left hand side, but involves two particle correlations and so deperiéfd.on

We could imagine deriving an equation fof ® /3¢, and then the two equations would solve the problem.
Unfortunately, it is becomes apparent that the equatioryférwill involve f® etc., and we develop an
infinite hierarchyof equations. (This is typically the case where we try to solve a many body problem by
looking at equations for low order correlation functions—there is no free lunch!)

We “derive” the Boltzmann equation pproximatingthe right hand side with termsnly depending on

. There are two essential pieces of physics in the approximation. Firstly, it is assumed that only two
particles are everinteracting together (i.e. three body interactions are neglected beyond the product of pairwise
interactions). Secondly the effect of the correlations on a short timeiadaleedoy the collisions are ignored

in subsequent collisions—the approximatiomadlecular chaosin a dense system we might worry that two
particles that have just collided may rapidly collide again due to the particles “rattling around” in a cage of
neighbors. In a dilute gas this does not seem likely, so the assumption seems very reasonable. However this
approximation has a profound effect: the original Liouville equation satisfies the time reversal invariance of
the original equations, whereas the Boltzmann equation does not. This of course is vital if we are going to
study the relaxation towards equilibrium and dissipative processes. It is usually the case that the transition
from reversible to irreversible dynamics appears through “sleight of hand” rather than careful, systematic
derivation.



The Relaxation Time Approximation

We will first study the effect of collisions in a simple approximation: we suppose that collisions relax the
distribution back to the equilibrium distribution otacal equilibriumdistribution exponentially with a single
time constant
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Herefyis often the global equilibrium distribution. However since the collisions conserve certain quantities—
maybe energy, momentum, particle number etc.—these are not changefd eray describe the local
equilibrium at fixed values of these conserved quantities. The quantities conserved depend on the application:
in scattering off fixed impurities energy and number are conserved, but not momentum; in binary collisionsina
gas energy, momentum and number are all conserved. The local equilibrium distribution will be characterized
by the appropriate conjugate fields (temperature for conserved energy etc.) that may not be the global
equilibrium value.

: (15)

Consider the simple example of a charged gas in a constant, uniform electrical field scattering off fixed
impurities—the problem of electrical resistance.

The Boltzmann equation is R
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since the other terms on the right hand side are zero in steady state and for a spatially uniform situation.
(Both these conditions can easily be relaxed, e.g. to consider the transient in a spatially varying field, or
the response to a time varying field.) The distributigrhere is just the equilibrium one. For small electric
fields, 1 will be close tofy, and we can use this substitution on the right hand side, i.¢. ferfu + f1 with
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where is the unit vector along,and the second expression results sificis spherically symmetric. Now
the electric current is easily calculated

(17)
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(since fy yields zero current). This gives the conductivity tensor
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This is readily calculated fofy the Maxwell distribution or for g the Fermi-Dirac distribution for the gas
of electron quasipatrticles in a low temperature (compared to the Fermi energy!) metal. In either case the
integral is just:§;; with n the particle density, giving a diagonal conductivity

o = ng’t/m. (20)



	Physics 127b: Statistical Mechanics
	Kinetic Theory
	The simplification
	Elementary results
	Boltzmann Equation
	The Relaxation Time Approximation



