
Physics 127a: Class Notes

Lecture 5: Energy, Heat and the Carnot Cycle

Thermodynamic identity

For the entropy of an isolated systemS(E,N, V ) we can form the differential, evaluating the partials in
terms of these expressions forT ,µ, andP . This gives thethermodynamic identity

dS = 1

T
dE − µ

T
dN + P

T
dV (1)

telling us how infinitesimal changes ofE,N, V changeS. Alternatively we could solveS = S(E,N, V ) to
findE(S,N.V ). By rearranging Eq. (1) we have an alternative form of the thermodynamic identity

dE = T dS + µdN − PdV. (2)

This immediately shows us

T =
(
∂E

∂S

)
N,V

, µ =
(
∂E

∂N

)
S,V

, P = −
(
∂E

∂V

)
S,N

, (3)

which may be more familiar results. In particular the expression forP corresponds to the idea of “virtual
work”: ask how the energy changes if you change the volume so that the entropy does not change (which,
from the microscopic definition we see corresponds to not changing the state of the system, i.e. an adiabatic
change).

The thermodynamic identities are the starting point for deducing many results in thermodynamics that
are useful in relating different experimental quantities, such as the specific heats at constant volume and
pressure.

Extensivity

The energy, entropy, number, and volume areextensivequantities—they grow proportional to the volume
if identical subsytems are put together. On the other hand temperature, chemical potential and pressure are
intensive variables—they do not change when identical subsytems are put together. If we define densities of
the energy and entropyε = E/N , s = S/N , ρ−1 = V/N (“energy per particle” etc.) then we must have

ε = ε(s, ρ). (4)

Note that 3 extensive variables, or 2 intensive variables (plus the “amount”) are sufficient to define the
thermodynamic state.

Finally the process of incrementing the size of a system by adding an incremental volume of the same
material at the sameT ,µ, andP (so that the new system remains in equilibrium at these values) can be
calculated from Eq. (2). Integrating from zero size (sinceT ,µ, P remain constant in this process) gives

E = T S + µN − PV (5)

Reversible and Irreversible

A process is said to bereversibleif it can be exactly reversed by infinitesimal changes in the control variables.
otherwise it isirreversible.

Reversible changes are characterized by: slow, friction free, the balance of forces.
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Irreversible changes are often: fast or with friction so that dissipation occurs
In macroscopic systems we associate a reversible change with the quasistatic change of thermodynamic

variables so that at each stage of the process the system is equilibrium. In an isolated system a reversible
change must be isentropic, since ifdS/dt > 0 for one direction, then reversibility impliesdS/dt < 0 for
the reverse direction, which violates the second law.

Work and Heat

We will consider a fixed number of particlesN in the following.
We have derived the thermodynamic identity

dE = T dS − PdV. (6)

This relates the changes in thermodynamic variables in equilibrium states in a macroscopic system. For
concreteness think of a typical engine-type arrangement of a volume of working fluid held by a movable
piston (on which we can do work, or which does work on us, via a forceF ) and in which may exchange
energy (but notN or V ) with a thermal reservoir at temperatureT . The dotted box in the figure indicates
that together, piston plus thermal reservoir, form an isolated system.

T

Fgas

An example of the working fluid might be the ideal gas.
We do work on the systemdW = FAdx (x is the position of the piston of areaA). In a reversible,

quasistatic changeF = PA with P the pressure of the fluid, and the work doneon the gas in a small change
of volume is

dW = −PdV. (7)

In general, there will also be a transfer of energy from the reservoir to the system: we call this heat and write
this portion of the energy added to the system asdQ. For a reverisble change we can relatedQ to the change
in the entropy of the systemdS, for in a reversible change the total change of entropy of system + reservoir
is zero

0= dS − 1

T
dQ. (8)

The second term is the change of entropy of the reservoir evaluated as(∂Sr/∂Er)(−dQ) = −dQ/T where
T is the temperature of the reservoir.

Thus in general we have (conservation of energy)

dE = dQ+ dW, (9)

a statement of thefirst law of thermodynamics. In the special case of a reversible change

dQ = T dS and dW = −PdV (10)

in which case Eq. (9) is consistent with the thermodynamic identity.(the conservation of energy). An important
fact is thatdQ anddW arenotdifferentials of functions of state—there is no “work content” or “heat content”
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of a system (I’m using the symbold, unfortunately not very different fromd, to denote this. I used d-slash
in class.) However for a reversible changedQ/T is a differential (of the entropy) and so 1/T is said to be
an integrating factor for the heat.

Now consider an irreversible change. Equation (6) just refers to the endpoints, and still applies. However
during the process a singleP andT may not define the state of the gas, and the force on the piston may not
balanceF 6= PA so that the work done may not be−PdV . In addition, the entropy of the isolated system
will increase, so that

dS − dQ

T
> 0. (11)

Note that hereT is the temperature of the reservoir,dQ is the energy transferred from reservoir to piston,
anddSr is still given bydQ/T because we suppose changes in the reservoir are quasistatic and reversible.
Thus quite generally we have the relationship between the heat added to a system and the entropy change of
the system

dQ ≤ T dS (12)

with T the temperature of the reservoir, with the equality only applying for a reversible change. In particular
integrating around a closed loop of changes that brings the working fluid back to its initial state∮

dQ

T
≤ 0, (13)

again with the equality satisfied only for a completely reversible cycle.

Carnot Cycle

isotherms

thermally
isolated

T2

T1

P

V

absorbs Q
2

emits Q1

This is a simplified version of an engine converting heat to work that was important in the development of
thermodynamics, which tells us the limits to the efficiency of such engines. In the Carnot Cycle a working
fluid such as the one we have just investigated is taken through expansion-compression cycle, with portions of
the cycle either thermally isolated or in contact with one of two thermal reservoirs at different temperatures.
Since the final state of the fluid is unchanged after a cycle, the net result is taking heatQ2 from the hot
reservoir at temperatureT2, and converting partW = Q2−Q1 to work done, while rejecting the rest of the
energyQ1 as heat to the lower reservoir at temperatureT1. (Since we have complete expressions for the ideal
gas, this is a useful example if you want to calculate everything in detail.)
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The work doneby the gasW = Q2−Q1 is the area of the loop (
∮
PdV around the loop). On the other

hand we have ∮
dQ

T
= Q2

T2
− Q1

T1
≤ 0, (14)

so that the efficiency (work done over heat absorbed) is

η = W

Q2
= 1− Q1

Q2
≤ T2− T1

T2
. (15)

Thus the efficiency is limited by the temperature difference that can be reached, and is always less for an
irreversible cycle (inequality) than for the ideal reversible one (equality).

We can make a refrigerator by running an engine backwards. Then we do workW taking heatQ1 out of
the colder temperature reservoir atT1, and dumping bothW andQ1 into the hot reservoir atT2. A reasonable
definition of the efficiency here is

ηc = |Q1|
|W | ≤

T1

T2− T1
. (16)

Noteηc may be greater than one, so that refrigerators (or air conditioners) are quite efficient, but the efficiency
decreases reapidly as the desired temperature difference becomes large—turn your thermostat up in when
you are using your air conditionner in hot weather! (Of course, we also need work, which is the “expensive”
sort of energy.)

Macroscopic Formulations of the Second Law

Considerations of Carnot cycles led to various rigorous macroscopic statements of the second law, that can
be shown to be equivalent:

Clausius: It is impossible to devise an engine which, working in a cycle, produces no effect other than the
transfer of heat from a colder to a hotter body.

Kelvin: It is impossible to devise an engine which, working in a closed cycle, produces no effect other than
the extraction of heat from a reservoir and the performance of an equal amount of mechanical work.

Caratheodory: In the neighborhood of any equilibrium state of a system there are states which are inacces-
sible by a adiathermal [work only] process.

Reif: An equilibrium macrostate of a system can be characterized by a quantityS called the entropy which
has the properties: (a) in any process in which a thermally isolated system goes from one macrostate
to another, the entropy tends to increase1S ≥ 0; (b) if the system is not isolated and undergoes a
quasi-static infinitesimal process in which it absorbs heatdQ, thendS = dQ/T whereT is a quantity
(called the absolute temperature) characteristic of the macrostate of the system.
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