
Physics 127a: Class Notes

Lecture 12: Quantum Statistical Mechanics

Basic Expressions

The results we have found for classical statistical mechanics have corresponding ones when quantum me-
chanics is important.

The average value of an observable is given by a statistical and quantum expectation value

Aobs =
∑
n

Pn 〈n |A| n〉 (1)

where|n〉 are the energy eigenstates (with energiesEn), A is the Hermitian operator corresponding to the
observable, andPn are probabilities depending on the ensemble:

microcanonical ensemble:Pn = 1/� over the� accessible states (e.g.En between energyE andE+1);

canonical ensemble:Pn = Q−1
N e
−βEn with QN =∑n e

−βEn ;

grand canonical ensemble:Pn = Q−1e−β(En−µNn) with Q =∑n,N e
−β(E(N)n −µN);

Note there are no “cross terms” such as〈m |A| n〉. This corresponds to arandom phaseassumption as
well as theequal probabilityassumption for the microcanonical ensemble.

I will first review the notation appearing in these results, and then discuss where they come from starting
from quantum mechanics.

Notation

The Dirac notation, using abra and aket, proves convenient, and if you are not familiar with it you should
consult your favorite quantum book (or another one if it is not included!).

Basically |ψ〉 represents a quantum state. Technically|ψ〉 is a vector inHilbert space, and the usual
rules of linear algebra apply. We call this aket vector. For example for a single electron in a 1/r potential
this might be a 1s state or a 2px state with respect to specified coordinate directions. We often think about
the state in terms of itspositionrepresentation orwavefunction

|ψ〉 ⇔ ψ(x) (2)

but we could also use a momentum representationψ̃(p) which would be the Fourier transform ofψ(x). The
notation|ψ〉 does not presuppose any particular way of representing the state.

Thescalar productbetween two states|ψ1〉 and|ψ2〉 is denoted by

〈ψ2|ψ1〉 = some complex number= 〈ψ1|ψ2〉∗ . (3)

In terms of the position representation

〈ψ2|ψ1〉 =
∫
dx ψ∗(x)ψ(x). (4)

This introduces thebra vectoror dual spacevector〈ψ |. It is introduced though the formation of the scalar
product, but it is often useful to “liberate it” from this construction.
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Any complete set of states|φi〉 provides abasis

|ψ〉 =
∑
i

ci |φi〉 . (5)

It is often easiest to use anorthonormal basiswith〈
φj |φi

〉 = δij (zero if i 6= j , unity if i = j ). (6)

Then
ci = 〈φi |ψ〉 and |ψ〉 =

∑
i

|φi〉 〈φi |ψ〉 . (7)

Since the latter expression is true for any|ψ〉, we have the completeness relation∑
i

|φi〉 〈φi | = 1, (8)

(put bras and kets on either side of this to make sense of it).
The position states|x〉 (particle “at”x) are a basis for single particle states

|ψ〉 =
∫
dx ψ(x) |x〉 , (9)

ψ(x) = 〈x|ψ〉 . (10)

The average value of measurements of an observable in the state|ψ〉 is
Aobs = 〈ψ |A|ψ〉 ≡ 〈ψ | (A |ψ〉) (11)

whereA is the Hermitian operator that corresponds to the observable. For example the energy is

Eobs = 〈ψ |H |ψ〉 . (12)

We can translate this into a more familiar for a single particle in one dimension in a potentialV (x) for
example by inserting complete sets of position states

∫
dx |x〉 〈x| = 1

Eobs =
∫
dx ′

∫
dx

〈
ψ |x ′〉 〈x ′ |H | x〉 〈x|ψ〉 (13)

=
∫
dx ψ∗(x)

(
−−h̄

2

2m

d2

dx2
+ V (x)

)
ψ(x). (14)

Density Matrix

Definition Write the quantum state of system plus rest of universe in terms of a complete orthonormal set
of system states|φi〉 and rest of universe states|θa〉

|ψ〉 =
∑
i,α

Ciα |φi〉 |θa〉 . (15)

Consider a Hermitian operatorA corresponding to an observable of the system, and therefore depending only
on system variables. The expectation value is

〈A〉 = 〈ψ |A|ψ〉 =
∑
i,j

〈
φi |A|φj

〉
ρji (16)
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where thedensity matrixρij is

ρij =
∑
α

C∗iαCjα (17)

and we have used
〈
θa|θβ

〉 = δαβ . We can define thedensity operatorρ as the operator that has these matrix
elements

〈
φj |ρ|φi

〉 = ρij , and then can write the expectation value as

〈A〉 = T r(Aρ) = T r(ρA) (18)

(whereT r denotes the trace—the sum of diagonal elements) using the completeness result
∑

j |j〉 〈j | = 1
in Eq. (16) and the cyclic invariance of the trace.

Properties

• From the definition Eq. (17) ρ is Hermitian:ρ∗ij = ρji ;
• Thereforeρ has real eigenvalueswi and the corresponding eigenvectors|i〉 form a complete orthonor-

mal set. We can use this set as a basis to diagonalizeρ, so that in this basis

ρij = wiδij or ρ =
∑
i

wi |i〉 〈i| . (19)

• Using〈ψ |A|ψ〉 = T r(ρA) for special choices ofA we show

– choosingA = 1 leads to ∑
i

wi = 1. (20)

– choosingA = |j〉 〈j | (the projection operator onto thej th state) leads to

wj = |〈j |ψ〉|2 ≥ 0 for all j. (21)

Together Eqs. (20) and (21) show that thewi and be considered to be aprobability, so thatwi is the
interpreted as the probability that the system is in the quantum state|i〉. In the diagonal basis Eq. (18)
reduces to

〈A〉 =
∑
i

wi 〈i |A| i〉 (22)

telling us that the expectation value of an observable is given by the weighted average of the expectation value
of the observable in the states|i〉. Note thatthis only applies in the special choice of basis that diagonalizes
ρ. In a general basis we just have the expression Eq. (18)

〈A〉 =
∑
p,q

〈p |A| q〉 ρqp. (23)

If all but onewi are zero, and then the non-zero value must be unity, the system is in apure stateand the
results correspond to the elementary formulation of quantum mechanics in terms of wave functions. If more
than onewi is nonzero, the system is in amixed state, andρ combines the necessary quantum and statistical
information. A necessary and sufficient condition forρ to describe a pure state isρ2 = ρ, so thatρ is then a
projection operator.
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Time dependence The system is supposed to be sufficiently weakly coupled to the rest of the universe
that the time dependence is given by the internal HamiltonianH . Then each state evolves according to the
Schrodinger equation, which for the bra and ket vectors reads

−ih̄ ∂
∂t
|i〉 = H |i〉 , (24a)

ih̄
∂

∂t
〈i| = 〈i|H. (24b)

Then in the diagonal basis we have

−ih̄ ∂
∂t
ρ =

∑
i

wi

(
−ih̄ ∂

∂t
|i〉 〈i|

)
(25)

=
∑
i

wi (H |i〉 〈i| − |i〉 〈i|H) = [H, ρ] (26)

with [H, ρ] the commutator. (Note the time dependence ofρ comes from the time dependence of the states,
and the equation for∂ρ/∂t has the opposite sign from the equation for the time dependence of an operator
corresponding to a physical observable in the Heisenberg picture.)

Statistical Mechanics

So farρ just encapsulates how much of the behavior of the rest of the universe we need to know to calculate
expectation values of system observables. We now need to evaluateρ for various physical situations, and in
particular for systems in the microcanonical, canonical, and grand canonical ensemble.

If we allow the system to come into equilibrium we must have∂ρ/∂t = 0 and so

Equilibriumρ: [H, ρ] = 0. (27)

A sufficient condition for this isρ = ρ(H,C1, C2 . . .)withCi conserved quantities i.e. observables satisfying
[H,Ci ] = 0, and as in the classical case we assume this is the only way of satisfying Eq. (27) in physical
systems. This gives us the very important result thatρ andH are diagonalized in the same basis, i.e.the
states for which the density matrix is diagonal are in fact the energy eigenstates|n〉 (with energiesEn), so
that

ρ =
∑
n

wn |n〉 〈n| and 〈A〉 =
∑
n

wn 〈n |A| n〉 . (28)

Again these simple algebraic statements hide, or sensibly sidestep, many complicated processes. We
could, for example, imagine setting up our system in some pure state as an initial condition. This would
be some simple state that we could imagine establishing (e.g. all spins pointing in thex direction). We
could imagine following the time dependence of this pure state under the internal Hamiltonian: in general
it would evolve into a complicated linear combination of such simple basis states (which are not eigenstates
of the Hamiltonian in general). Unfortunately we would be fooling ourselves to imagine this is a good
description of the system, since the delicate phase relationships between these different components are too
easily disrupted by the residual interactions with the rest of the universe. The “quantum coherence” of the
system is lost, because macroscopic systems are inevitably coupled to the rest-of-the-universe degrees of
freedom, and even very weak coupling readily destroys the delicate phase relationships between different
components of the wavefunction. Thus it is profitable to sidestep these difficulties, and use the observed
fact that macroscopic systems come to equilibrium and so are defined by a time independent density matrix
(approximately, to sufficient precision…), and use this to calculate what we need to know.
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The major stumbling block to building quantum computers is precisely to reduce this loss of quantum
coherence (the tendency of the system to evolve from a pure state to a mixed state because of inevitable
residual couplings). It isvery hard to build systems of even a moderate number of particles, spins etc.,
for which the quantum coherence is maintained over a useful time period. There is a great deal of work
examining the loss of coherence for particular models of simple systems, the rest of the universe, and the
residual couplings. For such simple systems the process can be followed in detail. Of course, for macroscopic
systems the processes are much too complicated and varied to follow in detail, and we immediately jump to
the mixed state described by the equilibriumρ.

Microcanonical ensemble The energy and conserved quantities are all fixed for every allowed state

H |n〉 = E |n〉 (29)

Ci |n〉 = ci |n〉 (30)

and soH and all theCiand thereforρ itself are proportional to unit matrices between these states, i.e.

ρ =


1

�


1 0 0 0
0 1 0 0

0 0
. . . 0

0 0 0 1

 [0]

[0] [0]

 (31)

where the first block runs over the� accessible states. Or in terms of the weights

wn =
{ 1

�
for the� accessible states

0 otherwise
. (32)

Canonical ensemble The same arguments as in the classical case lead to

wn = e−βEn∑
n e
−βEn . (33)

We can also write the result as

ρ = e−βH

T re−βH
(34)

and then we have
QN = T re−βH and S = −kT r(ρ ln ρ). (35)

Coordinate representation Although we will use the diagonal (energy eigenstate) representation for most
purposes, we can use other basis states instead. For example consider the very simple example of a single
particle moving along a line of lengthL (with periodic boundary conditions). Define the unnormalized
density matrix in the canonical ensemble

ρ̄ = e−βH . (36)

Let us evaluatēρ in the coordinate representationρ̄(x, x ′;β). A convenient way to do this is to differentiate
Eq. (36) with respect toβ

−∂ρ̄
∂β
= Hρ̄. (37)
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which for the free particle becomes in the position basis

−∂ρ̄(x, x
′;β)

∂β
= − h̄

2

2m

∂2

∂x2
ρ̄(x, x ′;β) (38)

which must be solve with the “boundary condition”ρ̄(β = 0) = 1, i.e. ρ̄(x, x ′;β) = δ(x − x ′) (the delta
function). Notice what we are doing is calculatingρ̄ at some finite temperature by integrating from infinite
temperature where the density matrix is simple. We can solve Eq. (38) by recognizing it is thediffusion
equationwhereβ plays the role of time. The solution is a Gaussian that spreads asβ increases

ρ̄(x, x ′;β) =
√

m

2πh̄2β
exp

[
−
(

m

2h̄2β

)
(x − x ′)2

]
, (39)

where the prefactor is given by matching to the delta function asβ goes to zero (e.g. integrate over allx).
Notice we can write the exponential ase−π(x−x′)2/λ2

with λ = √h2/2πmkT the thermal length introduced
in our discussion of the classical gas. (Be careful of theh̄ andh symbols!)

The partition function is

Q1 = T rρ̄ =
∫ L

0
dxρ̄(x, x;β) = L

√
mkT

2πh̄2 . (40)

You should be able to see how this relates to the partition functionQN of the ideal gas calculated previously.
Equation (39) is the starting point for thepath integralformulation of quantum statistical problems—see

Feynman’s bookStatistical Mechanicsfor more on this.

Grand canonical ensemble Similarly, in this case

wn = e−β(E
(N)
n −µN)∑

n e
−β(E(N)n −µN)

(41)

and

ρ = e−β(H−µN)

T re−β(H−µN)
(42)

with N here the number operator. The grand canonical partition function is

Q = T re−β(H−µN). (43)
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