Physics 127a: Class Notes

Lecture 12: Quantum Statistical Mechanics
Basic Expressions

The results we have found for classical statistical mechanics have corresponding ones when quantum me-
chanics is important.
The average value of an observable is given by a statistical and quantum expectation value

Aops = Y Py (n|Aln) (1)

where|n) are the energy eigenstates (with enerdigy A is the Hermitian operator corresponding to the
observable, an@®, are probabilities depending on the ensemble:

microcanonical ensemble: P, = 1/ over the2 accessible states (e.§, between energ¥ andE + A);
canonical ensemble: P, = Qyte #E with Qy = Y, e PEn;

. . (N)
grand canonical ensemble: P, = Q~le AE—1N) with Q = Yoy e PET:,

Note there are no “cross terms” such(as|A| n). This corresponds to @ndom phas@assumption as
well as theequal probabilityassumption for the microcanonical ensemble.

| will first review the notation appearing in these results, and then discuss where they come from starting
from quantum mechanics.

Notation

The Dirac notation, using lara and aket proves convenient, and if you are not familiar with it you should
consult your favorite quantum book (or another one if it is not included?).

Basically |) represents a quantum state. Techniclly is a vector inHilbert space and the usual
rules of linear algebra apply. We call thikat vector. For example for a single electron in & Potential
this might be a 4 state or a 2, state with respect to specified coordinate directions. We often think about
the state in terms of itgositionrepresentation avavefunction

) < ¥ (X) (2)

but we could also use a momentum representatigm which would be the Fourier transform ¢f(x). The
notation|y) does not presuppose any particular way of representing the state.
Thescalar productbetween two statdgr1) and|yr,) is denoted by

(Y2l 1) = some complex numbes (yr1|y2)" . 3)

In terms of the position representation

(Walyr) = f X ¥ (Y (3). @)

This introduces théra vectoror dual spacevector(y/|. It is introduced though the formation of the scalar
product, but it is often useful to “liberate it” from this construction.



Any complete set of stateg;) provides aasis

W) = cilgn). (5)

1

It is often easiest to use amthonormal basisvith
(@;16:) = 8 (zeroifi # j, unity if i = j). (6)

Then
c=(pily) and  |y) =) le) (ilY). (7)

Since the latter expression is true for gy}, we have the completeness relation

> g (il =1, ®)

(put bras and kets on either side of this to make sense of it).
The position state) (particle “at”x) are a basis for single particle states

)= [axwoo b . ©)
¥(x) = (x[¥). (10)

The average value of measurements of an observable in théys}ate
Aops = (Y 1Al Y) = (Y| (AY)) (11)

whereA is the Hermitian operator that corresponds to the observable. For example the energy is

We can translate this into a more familiar for a single particle in one dimension in a poténtigffor
example by inserting complete sets of position stgtés |x) (x| = 1

Eops = / dx’ / dx (1) (' 1H] x) (x]9) (13)
—h? 42
_ fdx ) (—%W + v<x>) V). (14)

Density Matrix

Definition Write the quantum state of system plus rest of universe in terms of a complete orthonormal set
of system stateRp;) and rest of universe statés )

W) = Cia 1) 16a) - (15)

Consider a Hermitian operatdrcorresponding to an observable of the system, and therefore depending only
on system variables. The expectation value is

(A) = (W |AlY) = (6:1A16,) pji (16)

i,j



where thedensity matrixo;; is
Pij = Z C;kacjot (17)

and we have use(@awﬂ) = 8. We can define thdensity operatop as the operator that has these matrix
elements{@ lpl ¢l~> = p;j, and then can write the expectation value as

(A) = Tr(Ap) = Tr(pA) (18)
(whereTr denotes the trace—the sum of diagonal elements) using the completenesgjelsl)ltjl =1
in Eg. (16) and the cyclic invariance of the trace.
Properties
* From the definition Eq.17) p is Hermitian:,o;“j = Pji;

» Thereforep has real eigenvalues; and the corresponding eigenvectpisform a complete orthonor-
mal set. We can use this set as a basis to diagonalige that in this basis

pij=wid; or  p=" wli)il. (19)

» Using(y |A|¥) = Tr(pA) for special choices ol we show

— choosingA = 1 leads to

Sw=1 (20)

— choosingA = |j) (j| (the projection operator onto thi¢h state) leads to
w; = |(jly)?>0  forall,. (21)

Together Egs. 40) and 1) show that thew; and be considered to bepaobability, so thatw; is the
interpreted as the probability that the system is in the quantum |gjatén the diagonal basis Eq.1§)
reduces to

(A) = w; (i |A]d) (22)

telling us that the expectation value of an observable is given by the weighted average of the expectation value
of the observable in the statg$. Note thatthis only applies in the special choice of basis that diagonalizes
o. In a general basis we just have the expression Eg). (

(A) =D (plAlq) pyp. (23)

p.q

If all but onew; are zero, and then the non-zero value must be unity, the systemine atateand the
results correspond to the elementary formulation of quantum mechanics in terms of wave functions. If more
than onew; is nonzero, the system is imaixed stateandp combines the necessary quantum and statistical
information. A necessary and sufficient condition foio describe a pure stated = p, so thatp is then a
projection operator.



Time dependence The system is supposed to be sufficiently weakly coupled to the rest of the universe
that the time dependence is given by the internal HamiltoflaThen each state evolves according to the
Schrodinger equation, which for the bra and ket vectors reads

L0 .

—zhg li)=H i), (24a)
L0
lhg (i| = (i| H. (24b)

Then in the diagonal basis we have

—ih%p = Xi:wi (—m% li) (il) (25)
=Y wi (H i) (il — |i) (il H) = [H, p] (26)

with [H, p] the commutator. (Note the time dependence abmes from the time dependence of the states,
and the equation fadp /97 has the opposite sign from the equation for the time dependence of an operator
corresponding to a physical observable in the Heisenberg picture.)

Statistical Mechanics

So farp just encapsulates how much of the behavior of the rest of the universe we need to know to calculate
expectation values of system observables. We now need to evaltmtgarious physical situations, and in
particular for systems in the microcanonical, canonical, and grand canonical ensemble.

If we allow the system to come into equilibrium we must hapga: = 0 and so

Equilibrium p: [H, p] =0. (27)

A sufficient condition for thisi® = p(H, Cq1, C» . ..) with C; conserved quantitiesi.e. observables satisfying
[H, C;] = 0, and as in the classical case we assume this is the only way of satisfyingZem physical
systems. This gives us the very important result hanhd H are diagonalized in the same basis, tlee
states for which the density matrix is diagonal are in fact the energy eigens$tatésith energiest,), so
that

p=D wiln)nl and  (A)=) w.(nlAln). (28)

Again these simple algebraic statements hide, or sensibly sidestep, many complicated processes. We
could, for example, imagine setting up our system in some pure state as an initial condition. This would
be some simple state that we could imagine establishing (e.g. all spins pointingaindifextion). We
could imagine following the time dependence of this pure state under the internal Hamiltonian: in general
it would evolve into a complicated linear combination of such simple basis states (which are not eigenstates
of the Hamiltonian in general). Unfortunately we would be fooling ourselves to imagine this is a good
description of the system, since the delicate phase relationships between these different components are too
easily disrupted by the residual interactions with the rest of the universe. The “quantum coherence” of the
system is lost, because macroscopic systems are inevitably coupled to the rest-of-the-universe degrees of
freedom, and even very weak coupling readily destroys the delicate phase relationships between different
components of the wavefunction. Thus it is profitable to sidestep these difficulties, and use the observed
fact that macroscopic systems come to equilibrium and so are defined by a time independent density matrix
(approximately, to sufficient precision...), and use this to calculate what we need to know.



The major stumbling block to building quantum computers is precisely to reduce this loss of quantum
coherence (the tendency of the system to evolve from a pure state to a mixed state because of inevitable
residual couplings). It izery hardto build systems of even a moderate number of particles, spins etc.,
for which the quantum coherence is maintained over a useful time period. There is a great deal of work
examining the loss of coherence for particular models of simple systems, the rest of the universe, and the
residual couplings. For such simple systems the process can be followed in detail. Of course, for macroscopic
systems the processes are much too complicated and varied to follow in detail, and we immediately jump to
the mixed state described by the equilibrigm

Microcanonical ensemble The energy and conserved quantities are all fixed for every allowed state

H|n) = E |n) (29)
Ciln) =c;|n) (30)

and soH and all theC;and therefop itself are proportional to unit matrices between these states, i.e.

10 0 0
1010 0]
p=| aloo . ol (31)
00 0 1
B (O] (0] |

where the first block runs over tlig accessible states. Or in terms of the weights

l .
w, =1 @ for the_Q accessible states_ (32)
0 otherwise
Canonical ensemble The same arguments as in the classical case lead to
efﬂEn
We can also write the result as sH
o
= 34
" (34)
and then we have
Oy =Tre P and S =—kTr(plnp). (35)

Coordinate representation Although we will use the diagonal (energy eigenstate) representation for most
purposes, we can use other basis states instead. For example consider the very simple example of a single
particle moving along a line of length (with periodic boundary conditions). Define the unnormalized
density matrix in the canonical ensemble

p=e Pl (36)

Let us evaluate in the coordinate representatigiix, x’; 8). A convenient way to do this is to differentiate
Eq. (36) with respect tg8
ap

25 =17 (37)



which for the free particle becomes in the position basis

3p(x, x"s B) n? 92 _
e e Sk, x: 38
Y o 2P X (38)
which must be solve with the “boundary conditiop(g = 0) = 1, i.e. p(x, x"; B) = §(x — x') (the delta
function). Notice what we are doing is calculatipgat some finite temperature by integrating from infinite
temperature where the density matrix is simple. We can solve 38jbfy recognizing it is theliffusion
equationwherep plays the role of time. The solution is a Gaussian that spreadsrageases

- /. _ m o m WA A
p(x,x"s B) = /—Znhzﬁexp[ (2h2ﬂ>(x x)] (39)

where the prefactor is given by matching to the delta functiof gees to zero (e.g. integrate over &)l
Notice we can write the exponential as™*—"*/** with » = /h2/27mkT the thermal length introduced
in our discussion of the classical gas. (Be careful ofittaamdiz symbols!)

The partition function is

L kT
01=Trp= [ dxprxipy =17 (40)
0 2rh

You should be able to see how this relates to the partition fun@igrof the ideal gas calculated previously.
Equation B9) is the starting point for thpath integralformulation of quantum statistical problems—see
Feynman’s bool&tatistical Mechanicfor more on this.

Grand canonical ensemble Similarly, in this case

o—BEN —uN)

n = 41
v 3 e BEN —uN) (41)
and
e~ BH—1N)
P = Trehi—im (42)
with N here the number operator. The grand canonical partition function is
Q = Tre PH-1N), (43)
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