
Chapter 6

Power Spectrum

The power spectrum answers the question “How much of the signal is at a frequency
ω?”. We have seen that periodic signals give peaks at a fundamental and its
harmonics; quasiperiodic signals give peaks at linear combinations of two or more
irrationally related frequencies (often giving the appearance of a main sequence and
sidebands); and chaotic dynamics give broad band components to the spectrum.
Indeed this later may be used as a criterion for identifying the dynamics as chaotic.
Examples are shown indemonstration 1. These are all statements about the ideal
power spectrum, if infinitely long sequences of continuous data are available to
process. In practice there are always limitations of restricted data length and
sampling frequency, and it is important to investigate how these limitations affect
the appearance of the power spectrum.

6.1 Outline

If we did not have to worry about limitations in the data—i.e. we have a continuous
time seriesy(t) infinite in length—the power spectrum of the signal would be given
simply by the Fourier transform:Pideal(ω) ∝ |ỹ(ω)|2 with

ỹ(ω) = ∫∞
−∞ y(t)e

−iωtdt. (6.1)

On the other hand we usually have a signaly(t) measured over a finite interval
0 ≤ t ≤ T and with a finite sample rate so that we haveN values ofy is measured
at intervalst = integer × 1 (so thatT = N1). Then to estimate the power
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spectrum of the signal we calculate the Fourierseries

ỹk =
N−1∑
j=0

yj exp

(
2πijk

N

)
=

N−1∑
0

y(tj )exp
(
iωktj

)
(6.2)

where in the latter expression the discrete frequencies and timesωk = 2πk/T
andtj = j1 are introduced. (For a discrete time system of course the dynamics
is given in terms of the indexj .) For concreteness we takeN to be even in the
following. The power spectrum estimate is then (see ref. [1] for details)

P(ω) '


N−2 |ỹ0|2 for ω = 0

N−2
(
|ỹk|2+ |ỹN−k|2

)
for ω = 2πk/T , k = 1,2, . . . (N2 − 1)

N−2
∣∣ỹN/2∣∣2 for ω = πN/T = π/1

(6.3)

where we have used|ỹk| = |ỹ−k| for a real signal and̃y−k = ỹN−k from (6.2). We
will useP only for positive frequencies—the reason for the combination appearing
for frequencies away from the two end points. The normalization is chosen so that
the sum ofP(ω) over theN2 +1 frequenciesωk is the mean square amplitude of the
signalyj . Other techniques for estimating the power spectrum also exist [1]. The
question immediately arises of how the estimateP(ω) relates to the ideal spectrum
Pideal(ω).

To understand the full properties of this estimate of the spectrum it is useful to
identify (6.2) as the Fouriertransformof the modified time series̄y(t) defined by
a rather complicated expression that separates out the different “imperfections” in
the measurement:

ȳ(t) = [(y(t)×H(t, T ))⊗ S(t, T )] × S(t,1) . (6.4)

Here⊗ denotes a convolution,H(t, τ ) is the top hat function, with value 1 for
0 < t < τ and zero elsewhere, andS(t, τ ) is the “periodic spike” function zero
everywhere except att = nτ with n any integer. Note that the convolution with
S(t, T ) in (6.4) simply repeats the functiony(t)×H(t, T ) periodically with period
T—which is what the Fourier series construction (6.2) effectively does—and the
multiplication byS(t,1) is the sampling at the discrete intervals. The “ideal”
power spectrum would be given simply by the Fourier transformỹ(ω) of y(t).

Now we need three facts (see section6.2for further details):
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(i) The Fourier transform of a product is the convolution of the Fourier transforms:

if Y (t) = y1(t)× y2(t) then Ỹ (ω) = ỹ1(ω)⊗ ỹ2(ω) .

(ii) The Fourier transform of a convolution is the product of the Fourier transforms:

if Y (t) = y1(t)⊗ y2(t) then Ỹ (ω) = ỹ1(ω)× ỹ2(ω) .

(iii) The Fourier transform of a periodic set of spikes with separationτ is also a
periodic set of spikes and with separation in frequency2π

τ
; i.e. the Fourier

transform ofS(t, τ ) with respect tot is just proportional toS(ω, 2π
τ
). This

can be seen by noting the analogy to the diffraction pattern of a diffraction
grating. Alternatively note that sinceS(t, τ ) is periodic int with periodτ ,
its Fourier transform is nonzero only at the frequency2π

τ
and its harmonics,

and also sinceS(t, τ ) is very non-sinusoidal (each peak has amplitude at all
frequencies) we would expect a large amplitude in each of the harmonics.

So now we have

ȳ(ω) ∝
[(
ỹ(ω)⊗ H̃ (ω, 2π

T
)

)
× S(ω, 2π

T
)

]
⊗ S(ω, 2π

1
) (6.5)

where
∣∣∣H̃ (ω, 2π

T
)

∣∣∣ is just the familiar sinch function
(
sin 1

2ωT
)
/1

2ω, which is

maximum atω = 0, and has a widthδω ∼ 1
T

, but with oscillating tails falling
off only asω−1. Figure6.1shows the effect ofH̃ (ω, 2π

T
) on a pure frequencyωs

that is not an exact multiple of2π
T

, so does not “fit” with the measurement period
T . The line shows the functional form of the convolution in the [] in (6.5) for

ỹ(ω) = δ(ω−ωs) i.e.
∣∣∣H̃ (ω − ωs)∣∣∣, and the points show the values at the discrete

frequenciesn × 2π
T

. Note that the oscillations do not show up because the same
scale2π

T
determines the oscillations and the discrete frequencies. (The values used

in this plot areωs = .126π , T = 8 so that2π
T
= π

8 , and1 = 0.25 so that the
“Nyquist frequency”π/1 is 4π .)

So we are told in (6.5) to “take the ideal Fourier transform̃y(ω), convolve
(broaden) it with the resolution functioñH , sample the result atω = integer× 2π

T

and then superimpose the result repeatedly displaced byω = integer × 2π
1

”. The
last step means that we can restrict the range ofω to the Nyquist range− π

1
<

ω ≤ π
1

since other ranges are just duplications of this range, and that amplitudes
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Figure 6.1: Power spectrum of exp(iωst)with frequencyωs = 0.126π constructed
from a time series of lengthT = 8 with steps1 = 0.25. (A complex signal is
used for clarity. A real signal cosωst would be the superposition of this curve with
the same curve centered around−ωs .)

in the idealỹ(ω) outside this range will be folded back or “aliased” into the range
(e.g. an amplitude atω = 3π

21 will appear atω = π
21 due to the copy shifted to

ω = −2π
1

).
To get a better estimate of the spectrum it is customary to replace the discontin-

uous functionH by a window functionW , such as a tent, parabola or other shape
(i.e. multiply the data by such a function). Since the high frequency tails of the
Fourier transform are determined by the order of the derivative in which a discon-
tinuity first appears—the powerp of theω−p tail is the order of this derivative
plus 1—this pushes the discontinuities to higher order derivatives and so makes
the Fourier transformW̃ fall off more quickly withω. Windowing is investigated
in demonstration 2.

It is also important to make sure that the Nyquist frequencyπ/1 is large
enough (i.e. the sampling rate high enough), so that there is not significant power
beyond this frequency, to minimize the effects of the aliasing. A final point is
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that for nonperiodic signals the estimateỹk is a verynoisyestimate of the power
spectrum i.e. different choices of which time intervalT to measure will lead to a
power spectrum rather different in the details. (You can see this from the figure:
the largest value in the apparent power spectrum depends how closeωs is to some
integer multiple of 2π/T ). In fact the variance of̃yk is equal to the mean! To reduce
the scatter take a number of power spectra (from different sets of measurements
over intervals of lengthT ) andaveragethepowerspectra.

The dependence of the appearance of the power spectrum on various parameters
is illustrated indemonstration 3.

6.2 Details

This section is for reference only, and can be skipped on a first reading.
The convolution is defined as

y1(t)⊗ y2(t) =
∫ ∞
−∞

y1(t
′)y2(t − t ′) dt ′ , (6.6)

and we define the Fourier transform as

ỹ(ω) = ∫∞
−∞ y(t)e

−iωtdt
y(t) = 1

2π

∫∞
−∞ ỹ(ω)e

iωt dω
. (6.7)

The “periodic spike” functionS(t, τ ) is defined formally as

S(t, τ ) =
∞∑

n=−∞
δ(t − nτ)

with δ the Dirac Delta function. The Fourier transform ofS(t, τ ) with respect tot
is just 2π

τ
S(ω, 2π

τ
) since we have

S̃(ω) = lim
M→∞

∫ ∞
−∞

M∑
n=−M

δ(t − nτ) e−iωt dt = lim
M→∞

M∑
n=−M

e−inωτ . (6.8)

giving

S̃(ω) = lim
M→∞

sin(M + 1
2)ωτ

sin 1
2ωτ

(6.9)
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and then using the representation of a periodic sequence of delta functions

lim
M→∞

sin(M + 1
2)x

sin 1
2x

= 2π
∞∑

n=−∞
δ(x − 2nπ) .

You can see this latter result by noting the value is very large, 2M+1, atx = 2nπ
where the denominator goes to zero, falling to zero over the narrow distanceπ/M

and the integral is

1

2π

∫ π

−π
sin(M + 1

2)x

sin 1
2x

dx = 1 .

(Plot the function forM = 10 if you do not believe this!) AlsõH(ω, 2π
T
) is:

H̃ (ω,
2π

T
) =

∫ T

0
e−iωtdt = e−iωT /2 sin 1

2ωT

1
2ω

.
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