
Chapter 29

Quantum Chaos

What happens to a Hamiltonian system that for classical mechanics is chaotic
when we include a nonzerōh? There is no problem in principle to answering this
question: given a classical Hamiltonian, we can construct the quantum theory, for
example the corresponding Schrodinger equation, and solve this (maybe numeri-
cally) in the standard ways. The question remains, however, how do the solutions
to the quantum and classical problems compare, particularly the limith̄→ 0 where
we would expect some “correspondence” between the results. Does the knowledge
of the classical chaos help us understand the solutions to the quantum problem? Is
there some remanence of “chaos” in the quantum solution?

The most obvious feature of the quantum problem is that a nonzeroh̄ leads
to a finite splitting between the energy levels, so that the time dependence, given
by a sum over the eigenstates

∑
n Ane

−iEnt/h̄, becomes quasiperiodic rather than
chaotic [1]. The energy splitting can be estimated from the volume of phase space
available. For example for a particle of massm in a two dimensional stadium of side
L up to an energyE ∼ p2/2m there are of ordermEL2/h̄2 eigenstates (the phase
space volume ispL for each of two dimensions and the volume of four dimensional
phase space per quantum state is(2πh̄)2, a statement of the uncertainty principle).
Thus the average energy splitting isδE ∼ h̄2/mL2, and the frequency splitting
δE/h̄ goes to zero with̄h. Thus quantum mechanics tends to quench the classical
chaos, although the time scale for this to happen would be expected to diverge as
h̄→ 0.

There are interesting questions about the interface or crossover region, i.e.h̄

“small” but nonzero, known as the semiclassical regime. Some of these are:

1. Bohr quantization,En = (n+φ)h̄ωwith n any integer andφ some fractional
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correction that depends on the system (e.g.φ = 1
2 for the harmonic oscilla-

tor), allows us to quantizeintegrableclassical systems in the semiclassical
limit, with ω the frequency of the periodic motion. Is it possible to quantize
chaotic orbits in the semiclassical limit? Ideally we would like to be able to
calculate energy levels and estimate wave functions, but a second best would
be to learn less complete properties, e.g. statistics of energy spectra.

2. Does the difference between classically integrable and classically chaotic
systems affect the quantum properties, and if so how?

3. What interesting effects arise as thet →∞ andh̄→ 0 limits are taken?

We will address the first two issues for time independent Hamiltonians, and
the second for the quantum version of the kicked rotor, where the Hamiltonian is
periodic in time.

29.1 Energy Level Distribution

We are unlikely to be able to predict the exact energy levels of a classically chaotic
system from knowledge of the classical motion—after all we can only understand
the chaotic dynamics statistically. It makes sense therefore to ask statistical ques-
tions about the energy levels. Since the overall energy scale is set by details of the
problem, the most basic question to ask is the statistics of the separations between
adjacent energy levels on a scale small compared to the energy. Consider the dis-
tribution P(s) wheres is the separation of adjacent energy levels relative to the
mean energy level spacing at that energy. A remarkably close agreement for this
quantity is found between numerical or experimental measures of:

1. the energy levels of complicated quantum systems such as the energy lev-
els of heavy nuclei in sectors of fixed quantum numbers such as angular
momentum;

2. the eigenvalues ofrandom matricesthat could represent the Hamiltonian of
time reversal symmetric physical systems (the Gaussian Orthogonal Ensem-
ble, GOE);

3. the energy levels in the semiclassical limit of systems with chaotic classical
orbits, such as the stadium and Sinai billiards (seechapter 28).
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Furthermore the distributionP(s) is well approximated by a functional form
suggested by Wigner

P(s) = π

2
se−πs2/4 (29.1)

which is quite different from the assumption of a completely random distribution
of the levels themselves, which would give a Poisson distributionP(s) = e−s .
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Figure 29.1: Wigner and Poisson distributions

The idea that the distribution of energy levels for complicated systems such
as heavy nuclei might be given by random matrix theory goes back to Wigner
in 1957. The appropriate random matrix should be Hermitian to correspond to
a Hamiltonian, and then real for time reversal symmetry. The distribution of the
Hamiltonians should be invariant under any orthogonal transformation (change of
basis), hence the name GOE. The appropriate distribution turns out to be simply
an independent Gaussian distribution for each elementHjk with j ≥ k

p(
{
Hjk

}
) = C exp[−A

∑
jk

(Hjk)
2] (29.2)
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with C set by the normalization. If time reversal symmetry is broken, for example
by a magnetic field, the Hamiltonian is complex, the distribution should be invari-
ant under unitary transformations (hence the name Gaussian Unitary Ensemble,
GUE), and is given by taking independent Gaussian distributions for both real and
imaginary parts ofHjk for j ≥ k. There are exact expressions forP(s) forN ×N
matrices forN →∞, but the “Wigner distribution” (29.1), which is the result for
N = 2, is a good approximation to this. Note that there are no fit parameters, once
the mean spacing is normalized out.
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Figure 29.2: Energy level repulsion

The dramatic difference between the Poisson and Wigner distributions is the
different dependences at smalls: for the Wigner distributionP(s)→ s for small
s signifying a scarcity of levels spaced closely compared to the mean, whereas the
Poisson distribution remains finite. This can be understood in terms of the well
known phenomenon of level repulsion: two energy levels that appear to be going
to cross as a parameter is varied appear to repel one another, so that no crossing
occurs. This is easily motivated by the 2× 2 case

H =
[
ε δ

δ −ε
]

(29.3)

where energy level crossing might be expected forε = 0. In fact (see figure
29.2) the energy levels areE = ±√ε2+ δ2 so that for non-zeroδ the levels
stay apart by the distanceδ, and for crossingboth ε andδ have to be zero, with
correspondingly reduced probability for random matrix elements. Of course level
crossing is observed when the levels correspond to different symmetries, because
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then the off-diagonal matrix elements are always zero (there is zero overlap integral
of the wavefunctions with different symmetries). For the study of nuclei, the energy
levels are first sorted by symmetry before the statistics are calculated.

The exact equivalence of theP(s) for the random matrix problem and the clas-
sically chaotic system was conjectured by Bohigas, Giannoni and Schmit in 1984.
The proof of this relationship would apparently have interesting ramifications in
number theory, in particular the distribution of the zeroes of the Riemann zeta func-
tion. A proof has recently been claimed [3]. The distribution of separations for an
integrableclassical system on the other hand is given by the Poisson distribution.

29.2 The Quantum Rotor

The Hamiltonian for the unit mass undamped rotor with a periodic kick force
K sinθ with time period 1 (c.f.chapter 18, with a change of sign ofK) is

H = p2
θ

2
+K cosθ

∑
n

δ(t − n), (29.4)

with pθ the angular momentuṁθ . The quantum mechanical theory is given
by the commutation rule [θ, pθ ] = ih̄, equivalent to writing the momentum as
pθ = −ih̄∂/∂θ . This gives the time dependent Schrodinger equation for the wave
functionψ(θ, t)

ih̄
∂ψ

∂t
= − h̄

2

2

∂2ψ

∂θ2
+
[
K cosθ

∑
n

δ(t − n)
]
ψ. (29.5)

Whereas the classical theory just depends on a single parameter, the quantum theory
is defined by two parametersK andh̄.

It is easy to construct the solutions by treating the kick and the time between
the kicks separately. Integrating across thenth kick gives

ψ+(θ, n) = e−i(K/h̄) cosθψ−(θ, n). (29.6)

whereψ+(θ, n) = limε→0ψ(θ, t = n+ε) etc. It is useful to introduce an angular
momentum representation by Fourier transforming

ψ(θ, t) = 1√
2π

∑
m

ψ̃m(t)e
imθ . (29.7)
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Clearly, between kicks each component evolves as

ψ̃m(n+ t) ∼ e−ih̄m2t/2ψ̃+m(n), t < 1 (29.8)

These equations can then be combined to give the time evolution.
An interesting question to ask is what happens to the angular momentum as a

function of time, i.e.

< p2
θ (t) > h̄2

∑
m

m2
∣∣∣ψ̃m(t)∣∣∣2 . (29.9)

Classically, for large enoughK this diffuses to large values

< p2
θ (t) >∼ Dt (29.10)

withD ≈ 1
2K

2. Numerical evolution of the equations for the quantum rotor shows
that for small time the behavior is the same as the classical prediction, but fort > t∗
(with t∗ scaling as(K/h̄)2) the rate of increase flattens off and< p2

θ > saturates
at a finite value. Thus the quantum effects “localize” the momentum.
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Figure 29.3: Hopping on the Electron Lattice

There is in fact an interesting analogy [2] to the localization of electrons in a
random spatial potential, where again quantum effects cutoff the classical diffusive
process (here in coordinate space rather than momentum space) giving an electrical
insulator rather than a conductor. To make this connection note that since the
Hamiltonian is periodic we can use Floquet theory to define a pseudo-energyh̄ω

ψ(θ) = e−iωtu(θ, t) (29.11)
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with u satisfying the periodicity condition in timeu(θ, t+1) = u(θ, t). (If we turn
off the kicking,ω reduces to the energy and the eigenstates are just the angular
momentum states with energiesh̄ωm = h̄2m2/2.) Using the known behavior
between the kicks and across each kick, and the periodic boundary conditions
on u over the unit time interval, it is now possible to write the equation for the
pseudo-eigenstates in the form

Tmūm +
∑
l

Ulūm+l = (−U0)ūm (29.12)

whereTm = tan
(
ω − h̄m2/2

)
andū(θ) (with Fourier transform̄um) is defined in

terms of the valuesu−(θ) andu+(θ) just before and after the kick

ū = 1

2

[
u+ + u−] (29.13)

= u−

1− iU =
u+

1+ iU (29.14)

where we have used (29.6) and

U(θ) = − tan[(K/h̄) cosθ ] (29.15)

and thenUl = U−l is the Fourier coefficient ofU(θ). The analogy with the electron
case (see Figure29.3) is thatūn is the amplitude for the electron to be on thenth
lattice site with site energyTn, which for h̄/2π irrational is pseudo-random asn
varies,Ul is the matrix element for hoppingl steps to the right or left, and−U0

is the eigenvalue (energy). For a randomTm it is known that each solution̄un
is localized to some region of the lattice with exponential decay away from this
region, rather than being extended, plane-wave like as in the nonrandom case.

These issues have application to experiments on the microwave ionization from
highly excited hydrogen atoms. The high lying electronic states may be treated
semiclassically, and the multiphoton ionization process can be analyzed in terms
of the classical chaos analogous to the treatment of the quantum rotor.

March 5, 2000



Bibliography

[1] T. Hogg and B. Huberman, Phys. Rev. Lett.48, 711 (1983)

[2] S. Fishman, D.R. Grempel, and R.E. Prange, Phys. Rev. Lett.49, 509 (1982)

[3] A.V. Andreev, O. Agam, B.D. Simmons, and B.L. Altshuler, Phys. Rev. Lett.
76,3947 (1996)

8


	Quantum Chaos
	Energy Level Distribution
	The Quantum Rotor


