
Chapter 26

Shadowing

As we saw at the beginning of this course, the exponential growth of errors iterating
a chaotic dynamical system implies that a computer generated trajectory from some
initial condition will rapidly diverge from the true orbit due to truncation errors
or approximations in the numerical integration scheme, so that after a relatively
short time the computer generated orbit will have no correlation with the true orbit.
This means, for example, that the relationship of numerical modeling of a physical
system to the actual behavior is unclear. Our confidence in the modeling is partially
rescued, at least in chaotic systems of moderate dimension, by the phenomenon of
shadowing Shadowing is the existence of atrue trajectory that remains close to the
numerically produced trajectory (called thepseudo-trajectory) for very long times,
This true trajectory will not in general be the one with the same initial condition
as the numerical trajectory.

The phenomenon of shadowing has been known for a long time for hyperbolic
systems [1]. Recent work has addressed the question for nonhyperbolic physical
attractors.

26.1 Shadowing in Hyperbolic Systems

The idea of shadowing is surprisingly simple. Suppose we have a one dimensional
chaotic system, e.g. a map of the unit interval inx. Errors will grow under
forward iteration, so that a numerical trajectory will diverge from the true trajectory.
However given the positionpn of the pseudo-trajectory at thenth step, we can
imagine iterating backwards to find the preimages of this point. Since the map is
contracting under inverse iterations, the error decays for backwards trajectories, and
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the trajectory remains close to the backwards iteration of thetruetrajectory starting
atpn. This procedure applies to a hyperbolic system in higher dimensions, since the
expanding and contracting directions are consistent and separate. The shadowing
trajectory is found by integrating forward from the initial point the contracting
directions, and integrating backwards from the final point of the pseudo-trajectory
the expanding directions.

The existence of the shadowing trajectory near the pseudo-trajectory is shown
by the following argument [2] (we take the case of a two dimensional mapF for
simplicity).
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Figure 26.1: Construction of the first few parallelogramsPi .

Surround the points on the pseudo-trajectorypj andpj+1 by parallelograms
Pj andPj+1, with sides given by pieces of the stable and unstable manifolds,
chosen so thatF(Pj ) straddlesPj+1 as shown in figure26.1. If the one step error
is less thanδ then the sides of the parallelograms can be restricted to a few times
δ. Now consider a closed curveγ0 in P0 running from one of the contracting sides
to the other. ThenF(γo) must contain a closed curveγ1 that lies wholly within
P1 and runs from one contracting side to the other. Continue this to generate the
sequence of curvesγj completely inPj . Now choose a pointxn onγn. Then this
point is close topn (within a few δ). Also, each preimageFj−n(xn) lies onγj
and is therefore close to within a fewδ of pj . This shows the existence of the true
trajectory within the confining parallelograms.

An approximation to the true trajectory can be constructed by the “refinement”
technique [2]. Suppose thatπn+1 is the one step error due to truncation or noise

πn+1 = pn+1− f (pn) (26.1)
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where it is assumed that|πn+1| < δ. The refined orbit is{p̃n} with p̃n+1 = F(p̃n)
where

p̃n = pn +8n (26.2)

defines the correction to be found. The equation satisfied by8 is

8n+1 = p̃n+1− pn+1 (26.3)

= F(p̃n)− F(pn)− πn+1.

Assuming8n is small, the difference is given by linearizing, so that

8n+1 = Jn8n − πn+1 (26.4)

whereJn is the linearized mapDF at pn. Now write8n andπn in terms of
components along the stable and unstable directionssn andun at pn, i.e. 8n =
αnun + βnsn andπn = ηnun + ζnsn. Substitute into (26.4) using the result that
Jnun is alongun+1 etc., and equate components alongun+1 andsn+1:

αn+1 = |Jnun|αn − ηn+1 (26.5)

βn+1 = |Jnsn|βn − ζn+1

These equations are solved recursively, calculatingαn (the coefficients in the un-
stable direction) backwards from the last pointn = N

αn = (αn+1+ ηn+1) /|Jnun|, αN = 0 (26.6)

andβn forwards fromn = 0

βn+1 = βn|Jnsn| − ζn+1, β0 = 0. (26.7)

Iterating the refinement step gives better and better approximations to the true
trajectory. Note that|Jnun|−1 and|Jnsn| are less than someρ with 0< ρ < 1 for
a hyperbolic attractor, so that these are convergent iterations.

26.2 Shadowing in Nonhyperbolic Systems

The difficulty arises in nonhyperbolic orbits because the growth rates are not
bounded away from unity, and the angle between the stable and unstable subspaces
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is not bounded away from zero. How these quantities affect the construction of
a shadowing orbit is shown by the “shadowing theorem” of Sauer and Yorke [3],
which is roughly the following. Suppose{pn} is a pseudo-orbit with step errorδ.
Also rn is an upper bound for the expansion rate of the linear mapDF in the stable
subspaceSn andtn is an upper bound for the expansion ofDF−1 in the unstable
subspaceUn (actuallySn andUn are defined as approximate stable and unstable
subspaces at the pointpn on the pseudo-trajectory). In additionθn is the angle
between stable and unstable subspaces. Define iteratively

Dn = cscθn + tnDn+1, DN = 0 (26.8)

Cn = cscθn + rn−1Cn−1, C0 = 0.

Then if max{Cj,Dj } < A/
√
δ (whereA is a number that depends on the dimension

of the map and the maximum size of the first and second derivatives ofF andF−1)
there exists a true orbit{xn} of F with |xn − pn| <

√
δ .

This result tells us, for a particular orbit of lengthN that comes dangerously
close to a nonhyperbolic point so thatrn, tn, and cscθn may become large, how
bad the shadowing gets. Eventually, for large enoughN the orbit will become so
close to a nonhyperbolic point that the error becomes comparable to the size of the
attractor and shadowing fails completely. This is called aglitch.

An estimate for the shadowing time is given by parametrizing the nonhyperbolic
behavior in terms of the fluctuations of thefinite timeLyapunov exponents, given
by the usual definition but averaging over a large but finite number of iterations
(e.g. 100). A finite time Lyapunov exponent fluctuating about zero is a signature of
nonhyperbolic behavior. The meanm of the exponent acts to exponentially quench
errors (iterate backwards or forwards as appropriate), but fluctuations about zero
due to the varianceσ 2 will lead to the growth of errors. Sauer et al. [4] suggest that
y = logd, with d the distance between the pseudo-trajectory and the shadowing
trajectory, will evolve as a biased random walk with a probability distributionP(y)

described by a diffusion equation with drift

∂P

∂t
= σ 2

2

∂2P

∂y2
+ |m| ∂P

∂y
(26.9)

together with a reflecting barrier aty = logδ since there is an error of this size
at each step. Hereσ is the single step variance of the Lyapunov exponent near
zero, calculated as

√
T times the variance of the time-T Lyapunov exponent.

Note that the meanm leads to a drift of logd to smaller (more negative) values,
whereas the diffusion term depending onσ 2 will lead to spreading so that the tail
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will eventually extend to large values. The validity of the diffusion description
is confirmed numerically by an observed stationary probability distribution that is
consistent with the exponential distributionP(y) ∼ e−2|m|y/σ 2

(with a cutoff at
y = logδ). This leads to a power law distribution ofd i.e. P(d) ∼ d−2|m|/σ 2

. The
average shadowing time is given by the average time fory to diffuse to values of
order unity (the size of the attractor). From the diffusion equation this is of order1

<τ> ∼ δ−2|m|/σ 2
. (26.10)

Notice when|m|/σ 2 is close to zero the shadowing time depends very weakly on
the step errorδ, so that increasing the accuracy of the simulation does little to
improve the time for which the pseudo-orbit approximates the true orbit.
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1I have only found a rather roundabout argument to prove this result. Equation (26.9) describes
the diffusive motion of a “particle” of mobilityµ in a potential|m|y/µ (with a hard wall aty = logδ)
and with diffusion constantD = 1

2σ
2. The probability will be concentrated at smally near logδ.

We can estimate the timeτ for a particle to reachy0 of order unity through a Boltzmann expression
(the exponential will dominate any prefactors, as in calculating thermally activated escape rates)

τ−1 ∼ exp(− |m|y0

µkBT
)/

∫ ∞
logδ

dy exp(− |m|y0

µkBT
),

which gives (again ignoring many prefactors)

τ ∼ exp

(−m logδ

µkBT

)
.

But the Einstein relation gives

µkBT = D = 1

2
σ 2

and so the result.
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