Chapter 26

Shadowing

As we saw at the beginning of this course, the exponential growth of errors iterating
a chaotic dynamical system implies that a computer generated trajectory from some
initial condition will rapidly diverge from the true orbit due to truncation errors
or approximations in the numerical integration scheme, so that after a relatively
short time the computer generated orbit will have no correlation with the true orbit.
This means, for example, that the relationship of numerical modeling of a physical
system to the actual behavior is unclear. Our confidence in the modeling is partially
rescued, at least in chaotic systems of moderate dimension, by the phenomenon of
shadowing Shadowing is the existence trige trajectory that remains close to the
numerically produced trajectory (called theeudo-trajectoryfor very long times,
This true trajectory will not in general be the one with the same initial condition
as the numerical trajectory.

The phenomenon of shadowing has been known for a long time for hyperbolic
systems J]. Recent work has addressed the question for nonhyperbolic physical
attractors.

26.1 Shadowing in Hyperbolic Systems

The idea of shadowing is surprisingly simple. Suppose we have a one dimensional
chaotic system, e.g. a map of the unit intervalxin Errors will grow under
forward iteration, so that a numerical trajectory will diverge from the true trajectory.
However given the positiop, of the pseudo-trajectory at theh step, we can
imagine iterating backwards to find the preimages of this point. Since the map is
contracting under inverse iterations, the error decays for backwards trajectories, and
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the trajectory remains close to the backwards iteration dftiedrajectory starting
atp,. This procedure applies to a hyperbolic system in higher dimensions, since the
expanding and contracting directions are consistent and separate. The shadowing
trajectory is found by integrating forward from the initial point the contracting
directions, and integrating backwards from the final point of the pseudo-trajectory
the expanding directions.

The existence of the shadowing trajectory near the pseudo-trajectory is shown
by the following argument]] (we take the case of a two dimensional m@&aor

Figure 26.1: Construction of the first few parallelografs

Surround the points on the pseudo-trajectpfyand p ;1 by parallelograms
P; and P; .1, with sides given by pieces of the stable and unstable manifolds,
chosen so thaf' (P;) straddlesP; .1 as shown in figur@6.1. If the one step error
is less thar$ then the sides of the parallelograms can be restricted to a few times
8. Now consider a closed curyg in Py running from one of the contracting sides
to the other. TherF (y,) must contain a closed curyg that lies wholly within
Py and runs from one contracting side to the other. Continue this to generate the
sequence of curveg completely inP;. Now choose a point, ony,. Then this
point is close top, (within a few$). Also, each preimagé’/ " (x,) lies ony;
and is therefore close to within a felxof p;. This shows the existence of the true
trajectory within the confining parallelograms.

An approximation to the true trajectory can be constructed by the “refinement”
technique 2]. Suppose that, 1 is the one step error due to truncation or noise

Tpt1 = Pnt1 — f(Pn) (26.1)
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where itis assumed that, 1| < §. The refined orbit i$p,,} with p,+1 = F(p,)
where

Pn = pn+ Py (26.2)
defines the correction to be found. The equation satisfied sy

Dyl = Pnt1— Putl (26.3)
= F(pn) — F(pn) — Tnt1.

Assuming®,, is small, the difference is given by linearizing, so that

where J,, is the linearized maF at p,. Now write ®,, andx, in terms of
components along the stable and unstable directipasdu, at p,, i.e. ®, =
anit, + Bus, andm, = n,u, + &,s,. Substitute into 26.4) using the result that
Jouy is alongu, 11 etc., and equate components alef)g1 ands,+1:

Apt1 = |Jnttnloy — Npt1 (26.5)
Bn+1 = |IusnlBn — Cnt1

These equations are solved recursively, calculatip¢he coefficients in the un-
stable direction) backwards from the last point N

oy = (1 + Mut) /| nunl, ay = 0 (26-6)
andg,, forwards fromn = 0

Bnt1 = BulJusul — Cny1, Bo=0. (26.7)

Iterating the refinement step gives better and better approximations to the true
trajectory. Note that/,u,,| =t and|J,s,| are less than somewith 0 < p < 1 for
a hyperbolic attractor, so that these are convergent iterations.

26.2 Shadowing in Nonhyperbolic Systems

The difficulty arises in nonhyperbolic orbits because the growth rates are not
bounded away from unity, and the angle between the stable and unstable subspaces
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is not bounded away from zero. How these quantities affect the construction of
a shadowing orbit is shown by the “shadowing theorem” of Sauer and Y8tke [
which is roughly the following. Suppode,} is a pseudo-orbit with step errér
Alsor, is an upper bound for the expansion rate of the linear M&pn the stable
subspacss, andr, is an upper bound for the expansion®@# 1 in the unstable
subspacd/, (actuallysS, andU, are defined as approximate stable and unstable
subspaces at the poipf, on the pseudo-trajectory). In additiep is the angle
between stable and unstable subspaces. Define iteratively

D, =csch, +t,Dy,+1, Dy =0 (26.8)
C, =cscl, +ry,_1Cr—1, Co=0.

ThenifmaXC;, D;} < A/+/8 (whereA is anumber that depends on the dimension
of the map and the maximum size of the first and second derivatiiesiotl F —1)
there exists a true orbjik, } of F with |x, — pn| < V35 .

This result tells us, for a particular orbit of lengththat comes dangerously
close to a nonhyperbolic point so that 7,, and cs®, may become large, how
bad the shadowing gets. Eventually, for large enodigime orbit will become so
close to a nonhyperbolic point that the error becomes comparable to the size of the
attractor and shadowing fails completely. This is callagith.

An estimate for the shadowing time is given by parametrizing the nonhyperbolic
behavior in terms of the fluctuations of thirite timeLyapunov exponents, given
by the usual definition but averaging over a large but finite number of iterations
(e.g. 100). Afinite time Lyapunov exponent fluctuating about zero is a signature of
nonhyperbolic behavior. The mearof the exponent acts to exponentially quench
errors (iterate backwards or forwards as appropriate), but fluctuations about zero
due to the variance? will lead to the growth of errors. Sauer et a#] fuggest that
y = logd, with d the distance between the pseudo-trajectory and the shadowing
trajectory, will evolve as a biased random walk with a probability distribuion)
described by a diffusion equation with drift

3P  o%d%P P

or = 2 0y2 + [m| oy (26.9)
together with a reflecting barrier at= logé since there is an error of this size
at each step. Here is the single step variance of the Lyapunov exponent near
zero, calculated as/T times the variance of the timE-Lyapunov exponent.
Note that the meam leads to a drift of log/ to smaller (more negative) values,
whereas the diffusion term depending®@fwill lead to spreading so that the tail
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will eventually extend to large values. The validity of the diffusion description
is confirmed numerically by an observed stationary probability distribution that is
consistent with the exponential distributidh(y) ~ =21/ (with a cutoff at

y = log$). This leads to a power law distribution @i.e. P(d) ~ d—2m1/*, The
average shadowing time is given by the average time for diffuse to values of
order unity (the size of the attractor). From the diffusion equation this is of brder

<t> ~ §=2ml/o?, (26.10)

Notice when|m|/o? is close to zero the shadowing time depends very weakly on
the step errod, so that increasing the accuracy of the simulation does little to
improve the time for which the pseudo-orbit approximates the true orbit.

February 25, 2000

11 have only found a rather roundabout argument to prove this result. Equafich describes
the diffusive motion of a “particle” of mobility: in a potentialm|y/u (with a hard wall ay = log )
and with diffusion constanb = %02. The probability will be concentrated at smalhear logs.
We can estimate the timefor a particle to reaclyg of order unity through a Boltzmann expression
(the exponential will dominate any prefactors, as in calculating thermally activated escape rates)

|m|yo o |m|yo
)/ dy exp(—

i~ exp(—
wkgT logé uksT

),

which gives (again ignoring many prefactors)

(—m Iog8>
T ~exp .
ukpT

But the Einstein relation gives

and so the result.
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