
Chapter 23

Predicting Chaos

We have discussed methods for diagnosing chaos, but what about predicting the
existence of chaos in a dynamical system. This is a much harder problem, and it
seems that the best that can be done is to predict the existence of “chaotic sets” that
are not attractors but may perhaps “organize” the chaotic attractor. These methods
rely on the understanding of the complicated structure that emerges in phase space
when a homoclinic or heteroclinic orbit is perturbed. To introduce these ideas we
first introduce a definition of chaos that is useful for sets that are not attractors,
motivating the idea using the simplest of chaotic maps, the shift map.

23.1 The Shift Map and Symbolic Dynamics

The map

xn+1 = 2xn mod 1 (23.1)

displays many of the features of chaos in an analytically accessible way. The tent
map ata = 2 is equivalent to the shift map.

To understand the dynamics write the initial point in binary representation
x0 = 0.a1a2 . . . equivalent to

x0 =
∑

av2
−ν (23.2)

with eachai either 0 or 1. The action of the map is simply to shift the “binal” point
to the right and discard the first digit

x1 = f (x0) = 0.a2a3 . . . (23.3)
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Many properties are now evident:

1. Sensitivity to initial conditions: two initial conditions differing by of order
2−m lead to orbits that differ byO(1) afterm iterations.

2. The answer to the question whether themth iteration from a random initial
condition is greater or less than1

2 is as random as a coin toss. This reduction
of chaotic dynamics to a random sequence of 0 and 1 (called a Bernouilli
sequence) by a fixed partition of the phase space is known as “symbolic
dynamics”.

3. Information is created at 1 bit per iteration (the Kolmogorov entropy).

4. There are a countable infinity of initial conditions (those withx0 rational) that
lead to (unstable) periodic orbits. The complement of this set is of measure
1 i.e. most initial conditions lead to chaotic orbits.

Presumably these properties of the binary shift were known well before the
modern study of chaos. Indeed this example seems to reduce the phenomena
of chaos to a trivial reflection of the choice of initial condition. The change of
perspective in the past few decades is that this map is indeed a trivial example, but
an example representative of a phenomenon that occurs in physical systems and
one that remains hard to understand in general.

23.2 Alternative Definition of Chaos

An alternative definition of chaos that also applies to sets that are not attractors is:

A deterministic dynamics is chaotic if for any prescribed Bernouilli
sequence we can find an initial state for which the dynamics will
reproduce the sequence as it moves through a fixed partition of the
phase space.

This definition does not require that the “chaotic motion” be an attractor, and
so is more useful mathematically than physically.



CHAPTER 23. PREDICTING CHAOS 3

1/µ

1/µ

1/λ

1/λ 1/λ

(a) (b)

Figure 23.1: Construction of (a) the Horseshoe map and (b) the inverse map.

23.3 Smale Horseshoe

Consider the mapM of the unit squareD given by figure (23.1a), with parameters
λ andµ. Note that we are only interested in points that are mapped back into
the square: the “horseshoe” connection is only used to illustrate the continuity.
After one iteration portions of the unit square are mapped to two vertical stripes of
widthλ−1 that we will labelV0 andV1. Successive iterations lead to finer and finer
stripes (figure23.2a). The inverse map can be constructed in a similar manner,
figure (23.1b). Iterating the inverse map on the unit square leads to finer and finer
horizontal stripes (figure23.2a). Note that

M(H0) = V0 and M−1(V0) = H0 (23.4)

M(H1) = V1 and M−1(V1) = H1

Under each forward or backward iteration some points will be mapped outside
the square and are no longer considered, i.e. the measure of the set decreases at
each iteration and eventually, after a large number of iterations, almost all initial
conditions will leave the square, i.e. the generated set is not an attractor. However
we may construct the invariant set3 that is invariant under an arbitrary number of
iterations:

. . .M−2(D) ∩M−1(D) ∩D ∩M(D) ∩M2(D) ∩ . . . (23.5)
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Figure 23.2: (a) Iterates of the map and the inverse on the unit square. The
labelling of the vertical stripes should be read backwards from the decimal point,
the labelling of horizontal stripes forwards. Then the labels show the horizontal or
vertical location now and at previous iterates ofM (vertical) orM−1 (horizontal).
(b) and (c): constructing the invariant set, first and second level.

The first two levels of this constructionM−1(D)∩D ∩M(D) andM−2(D)∩
M−1(D) ∩ D ∩M(D) ∩M2(D) are shown in figure (23.2): the regions left in
the set can be labelled by a bi-infinite sequence of 0’s and 1’s corresponding to the
horizontal and vertical striping. The labels can be combined into a binary number
(vertical indices).(horizontal indices)

Ex ≡ . . . s−2s−1 · s0s1s2 . . . (23.6)

where

si =
{

0 if Mi(Ex) is inH0

1 if Mi(Ex) is inH1
. (23.7)

The effect of the map is thenM(Ex) = Ex′ whereEx′ is given by shifting the “binal”
point one step to the right. Thus again a dynamical system is reduced to the binary
shift operation (but in the present case, the horseshoe map is invertible, unlike
the shift map above). Again this means that periodic orbits are dense in3 (start
from an initial point represented by a periodic binary expansion), but there are an
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uncountable number of nonperiodic orbits (irrational initial conditions), and there
is at least one orbit that is dense in3 (i.e. comes arbitrarily close to any point).

Note the similarity to the bakers’ map construction. The Smale horseshoe has
the advantage of being continuous. On the other hand the invariant set is not an
attractor, and is reached only for a set of initial conditions in the square of measure
zero. However because the map is smooth, we have the chance of finding it in
smooth dynamical systems, so that non-attracting chaotic sets can be proven to
occur on these cases. Often there are nearby attracting chaotic sets, although the
connection between these two phenomena does not seem to be understood.

23.4 Homoclinic Tangles

23.4.1 Stable and unstable manifolds
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Figure 23.3: Homoclinic Tangle

Consider a fixed point in an invertible 2-dimensional mapM with one stable
and one unstable direction. Thestableandunstable manifoldsof the fixed point
xf were introduced inchapter 22: the stable manifold ofxf is the set of pointsEx
suchMnEx → Exf asn → ∞; the unstable manifold ofxf is the set of pointsEx
suchM−nEx → Exf asn→∞.The stable and unstable manifolds are the nonlinear
extension of the stable and unstable eigenvectors of the linear analysis around
Exf . The existence and smoothness of the manifolds is proven under quite general
conditions. Although the manifolds are curves, the dynamics of the map from one
initial condition will, of course, jump between discrete points on the curve.
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The stable manifold cannot cross itself or the stable manifold of another fixed
point (since then there would be a point without a unique inverse). Similarly an
unstable manifold cannot cross itself or another unstable manifold. However an
unstable manifold can cross a stable manifold. When this occurs through a trans-
verse intersection rather than a tangency, a “homoclinic tangle” (or “heteroclinic
tangle” if the manifolds belong to different fixed points) occurs, and it can be shown
that a Smale horseshoe is produced, so that chaotic dynamics occurs (but need not
be an attractor).

The construction is shown in figure (23.3). Suppose the manifolds intersect at
the pointEx0, which therefore lies both on the stable manifoldWs and the unstable
manifoldWu. The mapEx1 = M(Ex0) of Ex0 must also lie on bothWu andWs and
so is another intersection of the manifolds. There are an infinite number of points
Mn(Ex0) before the fixed pointExf is reached, and so there are an infinite number of
intersections. As the pointMn(Ex0)approachesExf the unstable manifold is stretched
along the unstable direction, but in a way that cannot lead to self intersections.
Similarly under the inverse mappingM−n an infinite number of intersections are
produced. This gives the wild type of behavior shown in figure (23.3)
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Figure 23.4: Horseshoe due to a homoclinic intersection.

Now consider the effect of the map on a small squareJ centered on the fixed
point. The map will stretch the square alongWu (using continuity and the fact that
the fixed point remains fixed). After a sufficient numberq+ of forward iterations
J+ = Mq+(J ) will include the intersection pointEx0. Similarly under inverse
iterationsJ is stretched alongWs and after a sufficient numberq− of iterations
J− = M−q−(J ) will include the pointEx0. Now if we look at the effect of the map
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M̄ = Mq++q− on J− we find thatM̄ is the horseshoe map! Thus the transverse
intersection ofWu andWs implies the existence of complex dynamics.

Figure 23.5: Poincare section for Duffing Oscillator: (a) driving strengthg = 0
and no dampingγ = 0; (b) stable and unstable manifolds forg = 0.10; (c) stable
and unstable manifolds forg = 0.40; (d) attractor forg = 0.40. In (b)-(d) the
damping isγ = 0.25 and the drive freqeuncy isωD = 1. (From Guckenheimer
and Holmes)

The Duffing oscillator (chapter 3) illustrates these ideas [2]. ConsiderωD = 1
andγ = 0.25. For small drivingg = 0.1 the unstable manifold of the fixed point
(0,0) spirals into one or other of the stable fixed points and the Poincar´e section
plot reproduces the phase plane plot for no driving. Asg increases an intersection
of Ws andWu occurs leading to the homoclinic tangle. The numerical plot of
the chaotic attractor seems to coincide withWu (see the plots in figure23.5 at
g = 0.4).
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Figure 23.6: Geometry of Silnikov chaos

23.5 Silnikov Chaos

Consider a homoclinic orbit in a three dimensional phase space at a fixed point
with a complex pair of unstable eigenvaluesσ andσ ∗ and a real stable eigenvalue
λ (figure23.6). If there is a homoclinic orbit and also the condition|Reσ | < |λ|
is satisfied, then Silnikov showed that there are horseshoes and thus chaos in the
return map defined near the homoclinic orbit (see Guckenheimer and Holmes [2],
section 6.5). The same result applies for Reσ < 0 (spiralling in) andλ > 0. The
Rossler map (seeOdes demonstrations) appears to mimic this structure.
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