Chapter 16

Renormalization Group Theory

In the previous chaptea procedure was developed where higher ordery2les

were related to lower order cycles through a “functional composition and rescaling”
procedure. Based on this pictorial approach we are led to a formal understanding of
the period doubling route to chaos. This renormalization approach was conjectured

by Feigenbaum]], based on a similar qualitative analysis, and was later proved
rigorously by Collet and Eckmar?] for a power law maximumjx — %|1+8 with
small e, and using a rigorous numerical proof by Lanfof] for the quadratic
maximum.

It is convenient to shift coordinates — x — % so that the maximum is at

x = 0. The map is now of the intervai3 < x < 3 and is given by
1 1
Xn+1 = —§+Q<Z—X3> s (161)
(see figurel6.]).

16.1 The fixed point

Define an operatof that preforms the functional composition (“iteration”) and
rescaling:

Tl =—af (f(-3))- (16.2)

o

Note thatT operates on the functiof.
The universal behavior of the sequence of subharmonic bifurcations is under-
stood from the following two statements:

1
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Figure 16.1: Map of the unit interval shifted to have maximum at O.

1. The operatiol” has a fixed point solutiog(x) for a particular value of«,
i.e. T[g] =gor

s =—ag (g (->)). (16.3)

To completely define the solutignwe must fix the nature of the maximum
to be quadratic at = 0, and to set the overall scale (sincg(k) is a solution
ng(x/w) is also easily seen to be a solution) we chop&® = 1.

2. Linearizing about the fixed point &f yields asingle unstable direction
(eigenvector) with eigenvalug i.e. writing

f(x)=gx)+ o) (16.4)
with ¢ small, and defining the linearized operator
L[p] =TI[g+¢] —TI¢g] (16.5)

we must have

L][pV] ) =200 ) (16.6)
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defining the eigenvectos) and the eigenvalues®. Then ordering the
eigenvalues in decreasing sequence we must hdve= § > 0 (and we
then writegp©@ ash(x)), anda®) < 0 fori > 1. Explicitly, we have for the
linearization

Tlg+¢l=—ag+o)(s(-)+o(-3)).  @e7)
Then

Ligl o =—afo(s(-2))+¢ (¢(-2)) o (-2)}.

It may be worth emphasizing that we are looking at the fixed point and
linearization of theoperationT which acts on the space @inctions and

not the fixed point and linearization of timeapwhich acts on a point in the
unit interval.

16.2 Evaluation ofa and §

The numbers ands are defined by this abstract procedure, without any reference
to a dynamical system. This can be illustrated with a very crude approximation.
First for the fixed point equation we approximater) as

gx)=1+bx%+-.. (16.8)
and ignore all the higher order terms represented by-theThen
X
g (g (—;)) =1+b (14 bx%/a?)’. (16.9)
This is expanded up tO (x?) so that the fixed point equation becomes
1+ bx? = —a[1+ b+ (2b%/a?)x?]. (16.10)
Equating coefficients then givés= —« /2 and
a=1++3~273 (16.11)

(choosing the positive root far sinceb must be negative).
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The value ob is evaluated by an even cruder approximation for the eigenfunc-
tion 4 (x): we simply take the first term in a Taylor expansion, héx) ~ 1, and
demand that the linearization equation

—afn(e(2) +& (e () (L) =00 as12)
be satisfied at = 0 (where this approximation is best). This gives
—a[g'(g(0) +1] = 6. (16.13)
But g(0) = 1 andg’(1) = 2b = —a using (L6.9 for g. So
§~a’—a~473 (16.14)

These are very crude estimates just to show that the numbers are defined by state-
ments 1 and 2. Better estimates (e.g. keep more terms in the power series expan-
sions) give

a = —2.502807876.., §=4.6692016.. . (16.15)

16.3 Universal map functions

As all other “directions” around the fixed point contract, we can move out from
the fixed point along the unstable “direction” defined by the eigenvéctbefine

gr(x) = g(x) + 8 "h(x) (16.16)
for larger. Then
Tg, =T [g + 6_rh] =g+ Dp=g_4, (16.17)

where the second equality comes from the linearization near the fixed point and
the definition ofi as the eigenvector with eigenvaltie Eventually as we repeat
this operation the functiog, for decreasing: moves away from the vicinity of

the fixed point and the linearization procedure fails. However we can continue to
defineg, at smaller- through the operation df:

gr-1=Tgr. (1618)
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Figure 16.2: Flows of undef. The solid circles show successiye along the
unstable direction given by operations®f The empty circles show successive

T" fr.

This defines the sequence of functig) g1 ... approaching the limig. This is
illustrated in figurel6.2

Now thinking of these functions as one dimensional mgpsemember that if
f has a stablecycle thenf ( f (x)) has a stable’2 ! cycle, and sincé& gives just
this functional composition (together with rescaling) the operatiénl(§ acts to
decrease the period order by a factor of 2. Thus we can choose to lalgekiineh
thatg, has a 2 cycle (and thep itself shows a “2°” cycle). These;,, defined only
through referring to the fixed point structure, are universal versions of the sequence
of maps studied ichapter 15We have not fixed the normalization/ofx), which
affects the functional form of the, for smallr. This choice determines what
“type” of 2" cycle g, appears (superstable, marginally unstable etc.). The choice
of normalization defined by the requiremeg(0) = O selects the superstable
cycles. (This is because the period 1 superstable cycle corresponds to the situation
where the unit slope diagonal through the origin intersects the map curve at the
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maximum and this occurs when then maximum is at O, see figurel6.1]).

16.4 Bifurcations in the physical map

The fixed point in function space has one unstable direction: all other directions
are contracting and we can construct a hypersurface in function space (the stable
manifold) such that functiong > on this hypersurface evolve towards the fixed
point g under the operatioff. Since the stable manifold is codimension 1 we
might expect a functiorfg (x) parameterized by a single paramekeio intersect

the stable manifold for some value Bfwhich we will call R,. Then under the
operation ofl’

T" fr, —> & as n — oo. (16.19)

What aboutfr for R nearR.? Initially (for smalln) 7" fr will follow 7" fr_,
sinceR — Ry is small, i.e. it will flow towardsthe fixed point. IfR — Ry is
sufficiently small,T" fx will approach very close to the fixed point for some range
of n (figure 16.2). Since we understand the behavior here in terms of the fixed
point and linearization we learn properties of gfg/sicalmap from the properties
of the fixed point and theniversalmapsg,. However, since the fixed point has
oneunstabledirection, eventuallyr'” fz will begin to flow away from the fixed
point along a path close to the unstable directign), and we need to proceed
carefully.

We splitthen operations of” into a number of segments. Firstwe operate some
finite numbelrg times, withg sufficiently large to bring? f that the components
along the unstable directions have decayed, i.e. to bring the function into the
vicinity of the fixed point. The numbey will not depend onR — R, for small
values of this quantity, and is roughly the number of operations needed to bring
fr., into the vicinity of the fixed point. Taylor expansion then gives the amplitude
along the unstable direction to be linear in the deviafton R, for small enough
R — Ry, SO that

T9 fr = g(x) 4+ ¢ (Rso — R) h(x) (16.20)

with ¢ some number. The initial flow away from the fixed point is given by the
linearization. So next we operate a numbetimes with p large (tending tao
asR — R, — 0), but small enough so that function remains in the linear regime
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along the unstable direction. This gives

TP*d frp = TP[g(x)+ ¢ (Reo — R)h(x)]

= g(x)+ ¢ (Rso — R)8Ph(x) (16.21)

And then we complet&” with a furthern — p — ¢ actions, which may take the
function into the nonlinear regime. Finally we may write

T"fr = T'P9[g(x) +¢(Roo — R) 87h(x)]

= T"7[g(x) + ¢ (Roo — R)67h(x)] (16.22)
with ¢ = ¢§4.
Now if we make the special choices Bf= R,, defined by
¢(Roo — Ry) =8 (16.23)
we have
T" fr, =T" 7 [g(x) + 8" 7"h(x)] = gm—n. (16.24)

with g,,—, the universal superstabl&?2"cycle. But each operation @fdecreases
the order of the cycle by a factor of 2nd so we see thgk , must have a superstable
2"cycle.

Thus we have shown thatif,, — R = ¢~ 187" then f will show a superstable
2" cycle, and as: increases to infinity we will find a cascade of period doubling
bifurcations, with superstable orbits at valuesiivith separation ratios given
by the universal constait We have shown thexistence of the period doubling
cascadewith universalproperties based on the existence of the fixed poirt of
with the assumed properties, and the assumption fhatill cross the unstable
manifold of the fixed point for som&. Since the stable manifold is of codimension
1 this latter should be a common occurrence.

16.5 Scaling of the map function

Putting in the scaling factors we have
20 = (=) T f(—a)"x) (16.25)

for any functionf. In particular using16.24 for fg, we have

n

me = (_a)_ngm—n((_a)nx) (1626)
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for largem, n with m > n.
In particular, for example, if we take = n then

lim_f2 = (=)™ go((—a)"x) (16.27)

This says that the rescaled (@Y) version of the 2th order functional compaosition
of anymap f (with a quadratic maximum) at the value Bfgiving a superstable
2" cycle will tend to the universal functiogg for largen. This operation was
performed in chapter 18lemonstration L1Similarly takingn = m — 1 will yield
g1, etc.

Alternatively if we first setR = R, then

lim f& = (=)™ g((—e)"x) (16.28)

i.e. we approach the universal fixed point function, which we see to be the
universal “onset of chaos” function. This limit was approached in chapter 15,
demonstration 12

16.6 Applications - the Lyapunov exponent

Suppose we want to calculate some propétfyf] of the map functionf, such
as the Lyapunov exponent. Since according to the development in the previous
chapter

T" fRy = &m—n (16.29)

for m, n large andn < m, if we can relateP [ f] to P [T f], then by repeated
operation off’ we can relate the desired propeftjyf] to a property of the universal
map i.e. toP [g,], which of course is universal. Using this approach we can show
that certain properties of the physical mg@re universal, and we can sometimes
calculate the universal property precisely. Some of the calculations, such as for
the Lyapunov exponent, are quite simple. Others, such as the power spectrum and
the scaling of the separation of points in the orbit on which this depends, can be
quite intricate.

The mapf = fg, has a stable”2cycle, and the Lyapunov exponent is given
by the slopes of the map at the pointdn the cycle:

2"—-1

1
A= o > log | f(x)] - (16.30)
i=0
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Writing this sum instead as the sum of successive pairs of points

n-11

1
MA =5 Y 10g(|f 2| |/ zj40)]) (16.31)
j=0
and using the chain rule for differentiatintf = f(f (x)) we can write this as
1 2
=5 Z o9 (| 20s)) | = 54177, (16.32)

Itis easy to check that putting in the scaling factors in the definitich dbes not
change this result i.e.

ALf] = %x [£4]. (16.33)

This simply is the fact that we get the same divergence of orbits iteratirwalf
as many times.
Repeating this many times we have

S gna]. (16.34)

Now we choose: to be comparable ta. Let us for example choose= m, so
that

M) = ot [T ] =

1
A, = o [sol. (16.35)
But A [go] is some number independent of the natur¢ aihd of the index:z. This
gives us the important scaling resul /&, | o 27",
It is often convenient to rewrite the scaling result in terms of the evolution with
the map parametet (e.g. as in the Lyapunov plots ohapter 13 Thus we write

M SR = (5 = ceM092
R(Eo - ]Rm = 0/21 — (le—mlogs - (16.36)
= =

Eliminatingm we can write this as

. log 2
%o R — Reolf with B = % ~ 0.45, (16.37)
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This functional dependence gives the shape of the envelope of the Lyapunov expo-
nent for a fixed stability type (since ii.39 this is what the valueg,, refer to).

The same result applies aboReg,, where positive Lyapunov exponents indicate
chaotic dynamics (again for a fixed “type” of behavior, e.g. the “band merging”
points—seehapter 1.

February 4, 2000


../Lesson17/Demo5.html

Bibliography

[1] M.J. Feigenbaum, J. Stat. Phyd, 669 (1979)

[2] P. Collet and J.-P. Eckmann, “Iterated Maps of the Interval as Dynamical
Systems”, (Birkhauser, Boston)

[3] O.E. Lanford, Bull. Am. Math. Sod, 427 (1982)

11



	Renormalization Group Theory
	The fixed point
	Evaluation of $alpha $ and $delta $
	Universal map functions
	Bifurcations in the physical map
	Scaling of the map function
	Applications - the Lyapunov exponent


