
Chapter 16

Renormalization Group Theory

In theprevious chaptera procedure was developed where higher order 2n cycles
were related to lower order cycles through a “functional composition and rescaling”
procedure. Based on this pictorial approach we are led to a formal understanding of
the period doubling route to chaos. This renormalization approach was conjectured
by Feigenbaum [1], based on a similar qualitative analysis, and was later proved

rigorously by Collet and Eckman [2] for a power law maximum
∣∣x − 1

2

∣∣1+ε with
small ε, and using a rigorous numerical proof by Lanford [3] for the quadratic
maximum.

It is convenient to shift coordinatesx → x − 1
2 so that the maximum is at

x = 0. The map is now of the interval−1
2 ≤ x ≤ 1

2 and is given by

xn+1 = −1

2
+ a

(
1

4
− x2

n

)
, (16.1)

(see figure16.1).

16.1 The fixed point

Define an operatorT that preforms the functional composition (“iteration”) and
rescaling:

T [f ] (x) = −αf
(
f
(
−x
α

))
. (16.2)

Note thatT operates on the functionf .
The universal behavior of the sequence of subharmonic bifurcations is under-

stood from the following two statements:

1
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Figure 16.1: Map of the unit interval shifted to have maximum atx = 0.

1. The operationT has a fixed point solutiong(x) for a particular value ofα,
i.e. T [g] = g or

g(x) = −αg
(
g
(
−x
α

))
. (16.3)

To completely define the solutiong we must fix the nature of the maximum
to be quadratic atx = 0, and to set the overall scale (since ifg(x) is a solution
µg(x/µ) is also easily seen to be a solution) we chooseg(0) = 1.

2. Linearizing about the fixed point ofT yields asingle unstable direction
(eigenvector) with eigenvalueδ, i.e. writing

f (x) = g(x)+ φ(x) (16.4)

with φ small, and defining the linearized operator

L [φ] = T [g + φ] − T [g] (16.5)

we must have

L
[
φ(i)

]
(x) = λ(i)φ(i)(x) (16.6)
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defining the eigenvectorsφ(i) and the eigenvaluesλ(i). Then ordering the
eigenvalues in decreasing sequence we must haveλ(1) = δ > 0 (and we
then writeφ(0) ash(x)), andλ(i) < 0 for i > 1. Explicitly, we have for the
linearization

T [g + φ] = −α (g + φ)
(
g
(
−x
α

)
+ φ

(
−x
α

))
. (16.7)

Then

L [φ] (x) = −α
{
φ
(
g
(
−x
α

))
+ g′

(
g
(
−x
α

))
φ
(
−x
α

)}
.

It may be worth emphasizing that we are looking at the fixed point and
linearization of theoperationT which acts on the space offunctions, and
not the fixed point and linearization of themapwhich acts on a point in the
unit interval.

16.2 Evaluation ofα and δ

The numbersα andδ are defined by this abstract procedure, without any reference
to a dynamical system. This can be illustrated with a very crude approximation.

First for the fixed point equation we approximateg(x) as

g(x) = 1+ bx2+ · · · (16.8)

and ignore all the higher order terms represented by the· · · . Then

g
(
g
(
−x
α

))
= 1+ b (1+ bx2/α2)2 . (16.9)

This is expanded up toO(x2) so that the fixed point equation becomes

1+ bx2 = −α [1+ b + (2b2/α2)x2] . (16.10)

Equating coefficients then givesb = −α/2 and

α = 1+√3' 2.73 (16.11)

(choosing the positive root forα sinceb must be negative).
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The value ofδ is evaluated by an even cruder approximation for the eigenfunc-
tion h(x): we simply take the first term in a Taylor expansion, i.e.h(x) ' 1, and
demand that the linearization equation

−α
{
h
(
g
(
−x
α

))
+ g′

(
g
(
−x
α

))
h
(
−x
α

)}
= δh(x) (16.12)

be satisfied atx = 0 (where this approximation is best). This gives

−α [g′(g(0))+ 1
] = δ. (16.13)

But g(0) = 1 andg′(1) = 2b = −α using (16.8) for g. So

δ ' α2− α ' 4.73. (16.14)

These are very crude estimates just to show that the numbers are defined by state-
ments 1 and 2. Better estimates (e.g. keep more terms in the power series expan-
sions) give

α = −2.502807876. . . , δ = 4.6692016. . . . (16.15)

16.3 Universal map functions

As all other “directions” around the fixed point contract, we can move out from
the fixed point along the unstable “direction” defined by the eigenvectorh. Define

gr(x) = g(x)+ δ−rh(x) (16.16)

for larger. Then

T gr = T
[
g + δ−rh] = g + δ−(r−1)h = gr−1, (16.17)

where the second equality comes from the linearization near the fixed point and
the definition ofh as the eigenvector with eigenvalueδ. Eventually as we repeat
this operation the functiongr for decreasingr moves away from the vicinity of
the fixed point and the linearization procedure fails. However we can continue to
definegr at smallerr through the operation ofT :

gr−1 = T gr. (16.18)
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Figure 16.2: Flows of underT . The solid circles show successivegr along the
unstable direction given by operations ofT . The empty circles show successive
T nfR.

This defines the sequence of functiong0, g1 . . . approaching the limitg. This is
illustrated in figure16.2.

Now thinking of these functions as one dimensional mapsf , remember that if
f has a stable 2n cycle thenf (f (x)) has a stable 2n−1 cycle, and sinceT gives just
this functional composition (together with rescaling) the operation (16.18) acts to
decrease the period order by a factor of 2. Thus we can choose to label thegr such
thatgr has a 2r cycle (and theng itself shows a “2∞” cycle). Thesegr , defined only
through referring to the fixed point structure, are universal versions of the sequence
of maps studied inchapter 15. We have not fixed the normalization ofh(x), which
affects the functional form of thegr for small r. This choice determines what
“type” of 2r cyclegr appears (superstable, marginally unstable etc.). The choice
of normalization defined by the requirementg0(0) = 0 selects the superstable
cycles. (This is because the period 1 superstable cycle corresponds to the situation
where the unit slope diagonal through the origin intersects the map curve at the
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maximum and this occurs when then maximum is aty = 0, see figure16.1).

16.4 Bifurcations in the physical map

The fixed point in function space has one unstable direction: all other directions
are contracting and we can construct a hypersurface in function space (the stable
manifold) such that functionsf (∞) on this hypersurface evolve towards the fixed
point g under the operationT . Since the stable manifold is codimension 1 we
might expect a functionfR(x) parameterized by a single parameterR to intersect
the stable manifold for some value ofR which we will callR∞. Then under the
operation ofT

T nfR∞ → g as n→∞. (16.19)

What aboutfR forR nearR∞? Initially (for smalln) T nfR will follow T nfR∞,
sinceR − R∞ is small, i.e. it will flow towardsthe fixed point. IfR − R∞ is
sufficiently small,T nfR will approach very close to the fixed point for some range
of n (figure 16.2). Since we understand the behavior here in terms of the fixed
point and linearization we learn properties of thephysicalmap from the properties
of the fixed point and theuniversalmapsgr . However, since the fixed point has
oneunstabledirection, eventuallyT nfR will begin to flow away from the fixed
point along a path close to the unstable directionh(x), and we need to proceed
carefully.

We split thenoperations ofT into a number of segments. First we operate some
finite numberq times, withq sufficiently large to bringT qfR that the components
along the unstable directions have decayed, i.e. to bring the function into the
vicinity of the fixed point. The numberq will not depend onR − R∞ for small
values of this quantity, and is roughly the number of operations needed to bring
fR∞ into the vicinity of the fixed point. Taylor expansion then gives the amplitude
along the unstable direction to be linear in the deviationR−R∞ for small enough
R − R∞, so that

T qfR = g(x)+ c̄ (R∞ − R) h(x) (16.20)

with c̄ some number. The initial flow away from the fixed point is given by the
linearization. So next we operate a numberp times withp large (tending to∞
asR − R∞ → 0), but small enough so that function remains in the linear regime
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along the unstable direction. This gives

T p+qfR = T p [g(x)+ c̄ (R∞ − R) h(x)]
= g(x)+ c̄ (R∞ − R) δph(x) . (16.21)

And then we completeT n with a furthern − p − q actions, which may take the
function into the nonlinear regime. Finally we may write

T nfR = T n−p−q
[
g(x)+ c̄ (R∞ − R) δph(x)

]
= T n−p

[
g(x)+ c (R∞ − R) δph(x)

] (16.22)

with c = c̄δq .
Now if we make the special choices ofR = Rm defined by

c (R∞ − Rm) = δ−m (16.23)

we have

T nfRm = T n−p
[
g(x)+ δp−mh(x)] = gm−n, (16.24)

with gm−n the universal superstable 2m−ncycle. But each operation ofT decreases
the order of the cycle by a factor of 2,and so we see thatfRm must have a superstable
2mcycle.

Thus we have shown that ifR∞−R = c−1δ−m thenfR will show a superstable
2m cycle, and asm increases to infinity we will find a cascade of period doubling
bifurcations, with superstable orbits at values ofR with separation ratios given
by the universal constantδ. We have shown theexistence of the period doubling
cascadewith universalproperties based on the existence of the fixed point ofT

with the assumed properties, and the assumption thatfR will cross the unstable
manifold of the fixed point for someR.Since the stable manifold is of codimension
1 this latter should be a common occurrence.

16.5 Scaling of the map function

Putting in the scaling factors we have

f 2n(x) = (−α)−n T nf ((−α)nx) (16.25)

for any functionf . In particular using (16.24) for fRm we have

f 2n
Rm
= (−α)−ngm−n((−α)nx) (16.26)
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for largem, n with m ≥ n.
In particular, for example, if we takem = n then

lim
n→∞ f

2n
Rn
= (−α)−n g0((−α)nx) (16.27)

This says that the rescaled (byαn) version of the 2nth order functional composition
of anymapf (with a quadratic maximum) at the value ofR giving a superstable
2n cycle will tend to the universal functiong0 for largen. This operation was
performed in chapter 15,demonstration 11. Similarly takingn = m−1 will yield
g1, etc.

Alternatively if we first setR = R∞ then

lim
n→∞ f

2n
R∞ = (−α)−n g((−α)nx) (16.28)

i.e. we approach the universal fixed point function, which we see to be the
universal “onset of chaos” function. This limit was approached in chapter 15,
demonstration 12.

16.6 Applications - the Lyapunov exponent

Suppose we want to calculate some propertyP [f ] of the map functionf , such
as the Lyapunov exponent. Since according to the development in the previous
chapter

T nfRm = gm−n (16.29)

for m, n large andn ≤ m, if we can relateP [f ] to P [Tf ], then by repeated
operation ofT we can relate the desired propertyP [f ] to a property of the universal
map i.e. toP [gn], which of course is universal. Using this approach we can show
that certain properties of the physical mapf are universal, and we can sometimes
calculate the universal property precisely. Some of the calculations, such as for
the Lyapunov exponent, are quite simple. Others, such as the power spectrum and
the scaling of the separation of points in the orbit on which this depends, can be
quite intricate.

The mapf = fRm has a stable 2m cycle, and the Lyapunov exponent is given
by the slopes of the map at the pointsxi in the cycle:

λ [f ] = 1

2m

2m−1∑
i=0

log
∣∣f ′(xi)∣∣ . (16.30)
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Writing this sum instead as the sum of successive pairs of points

λ [f ] = 1

2m

2m−1−1∑
j=0

log
(∣∣f ′(x2j )

∣∣ ∣∣f ′(x2j+1)
∣∣) (16.31)

and using the chain rule for differentiatingf 2 = f (f (x)) we can write this as

λ [f ] = 1

2

 1

2m−1

2m−1−1∑
j=0

log
(∣∣∣f 2(x′2j )

∣∣∣)
 = 1

2
λ
[
f 2] . (16.32)

It is easy to check that putting in the scaling factors in the definition ofT does not
change this result i.e.

λ [f ] = 1

2
λ
[
f 2] . (16.33)

This simply is the fact that we get the same divergence of orbits iteratingf 2 half
as many times.

Repeating this many times we have

λ
[
fRm

] = 1

2n
λ
[
T nfRm

] = 1

2n
λ
[
gm−n

]
. (16.34)

Now we choosen to be comparable tom. Let us for example choosen = m, so
that

λ
[
fRm

] = 1

2m
λ [g0] . (16.35)

Butλ [g0] is some number independent of the nature off and of the indexm. This
gives us the important scaling resultλ

[
fRm

] ∝ 2−m.
It is often convenient to rewrite the scaling result in terms of the evolution with

the map parameterR (e.g. as in the Lyapunov plots ofchapter 14). Thus we write

λ
[
fRm

] = c 1
2m = ce−m log 2

R∞ − Rm = c′ 1
δm
= c′e−m logδ . (16.36)

Eliminatingm we can write this as

λ ∝ |R − R∞|β with β = log 2

logδ
' 0.45. (16.37)

../Lesson14/Demo1.html


CHAPTER 16. RENORMALIZATION GROUP THEORY 10

This functional dependence gives the shape of the envelope of the Lyapunov expo-
nent for a fixed stability type (since in (16.36) this is what the valuesRm refer to).
The same result applies aboveR∞, where positive Lyapunov exponents indicate
chaotic dynamics (again for a fixed “type” of behavior, e.g. the “band merging”
points–seechapter 17).

February 4, 2000
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