Chua Circuit Equations

Choose as the dynamical variables:

- V_{1} : the voltage across capacitor C_{1} (and the nonlinear resistance)
- V_{2} : the voltage across capacitor C_{2} (and the voltage across the inductor)
- I : the current through the inductor.

Kirchoff's laws then give

$$
\begin{aligned}
C_{1} \frac{d V_{1}}{d t} & =R^{-1}\left(V_{2}-V_{1}\right)-g\left(V_{1}\right) \\
C_{2} \frac{d V_{2}}{d t} & =-R^{-1}\left(V_{2}-V_{1}\right)+I \\
L \frac{d I}{d t} & =-r I-V_{2}
\end{aligned}
$$

where $g(V)$ is the conductance (I / V) for the effective nonlinear resistance (and is a negative quantity for the circuit). If we scale resistances by R_{1}, times by $C_{1} R_{1}$, measure voltages with respect to the switch point V_{c} in $g(V)$, and currents with respect to V_{c} / R_{1}, we get the equations

$$
\begin{aligned}
\frac{d X}{d t} & =a(Y-X)-\bar{g}(X) \\
\frac{d Y}{d t} & =\sigma[-a(Y-X)+Z] \\
\frac{d Z}{d t} & =-c(Y+\bar{r} Z)
\end{aligned}
$$

with $X=V_{1} / V_{c}, Y=V_{2} / V_{c}, Z=R_{1} I / V_{c}$, and then the parameters of the equations are:

a	R_{1} / R	0.923
b	$1-R_{1} / R_{2}$	0.636
c	$C_{1} R_{1}^{2} / L$	0.779
σ	C_{1} / C_{2}	0.066
\bar{r}	r / R_{1}	0.071

with the third column giving the values for the initial parameters of the applet. The nonlinear conductance is

$$
\bar{g}(X)=\left\{\begin{array}{cc}
-X & |X|<1 \\
{[-1+b(|X|-1)] \operatorname{sgn}(X)} & 1<|X|<10 \\
{[10(|X|-10)+(9 b-1)] \operatorname{sgn}(X)} & |X|>10
\end{array}\right.
$$

where the expression for $|X|>10$ is needed for stability, and corresponds to complicated saturation effects in the actual circuit. Note that the slope is -1 for $|X|<1,-b$ for $1<|X|<10$, and 10 for $|X|>10$.

The time independent solutions are at

$$
X= \pm \frac{1-b}{\frac{a}{1+\bar{r} a}-b} \simeq \pm \frac{1-b}{a-b}, \quad Y=\frac{a \bar{r}}{1+\bar{r} a} X \simeq 0, \quad Z=-\frac{a}{1+\bar{r} a} X \simeq-a X
$$

Linearizing about the fixed points gives solutions varying as $e^{\lambda t}$ with λ given by the eigenvalues of the stability matrix

$$
\left[\begin{array}{ccc}
-a+b & a & 0 \\
\sigma a & -\sigma a & \sigma \\
0 & -c & -\bar{r} c
\end{array}\right]
$$

and positive λ means the stationary solutions are unstable.
Some examples of the eigenvalues λ_{1}, λ_{2}, and λ_{3} :

a	b	c	σ	\bar{r}	λ_{1}	$\lambda_{2,3}$
0.923	0.636	0.779	0.066	0.071	-.40191	$-6.5991 \times 10^{-4} \pm .17715 i$
1	0.636	0.779	0.066	0.071	-.48631	$5.0174 \times 10^{-4} \pm .1836 i$
0.923	0.636	0.779	0.066	0	-.40617	$2.9125 \times 10^{-2} \pm .18836 i$
1	0.636	0.779	0.066	0	-.48897	$2.9486 \times 10^{-2} \pm .1934 i$

In each case there is one decaying (negative) eigenvalue, and a pair of oscillating (complex) eigenvalues, with an imaginary part around 0.2 , corresponding roughly to the $1 / \sqrt{L C_{2}}$ oscillation frequency, and a real part that is either slightly negative (decaying oscillation) as for the paraemters of the applet (first row) or slightly positive (growing oscillation) for the other rows.

